Optical system design and polarization aberration compensation based on vector diffraction
-
摘要:
目的: 针对含数字微镜阵列(DMD)的长波红外偏振光学系统中产生的衍射现象会导致系统中偏振像差发生变化,从而造成长波红外偏振光学系统偏振测量精度下降的问题,提出一种含DMD的长波红外二次成像光学系统偏振像差的分析及补偿方法。方法: 首先,构建长波红外偏振光学系统中波长与DMD尺寸关系的衍射与偏振像差特性传输模型,提出基于矢量衍射—偏振光琼斯矢量理论的偏振像差分析方法。其次,推导DMD的偏振像差和偏振度情况,确定DMD的最佳衍射级次、入射角与衍射效率,进而设计含DMD的二次成像长波红外偏振光学系统,得到DMD衍射特性对偏振像差的影响情况。最后,通过倾斜投影物镜、镜片镀膜及减小表面入射角来补偿光学系统的偏振像差,以解决衍射现象对长波红外偏振光学系统偏振像差产生的影响。结果: 仿真结果表明,系统全视场调制传递函数在截止频率处均接近衍射极限,最大畸变小于0.2%,成像质量良好,整体系统的二向衰减经补偿后减小到原来的1/12。结论: 该分析模型能够揭示衍射与偏振像差之间的关系,补偿方法可以使偏振像差有效地降低。Abstract:Objective: Aiming at the problem that the diffraction phenomenon generated in the Long-Wave Infrared (LWIR) polarized optics system containing Digital Micro-mirror Device (DMD) will lead to the change of the polarization aberration in the system, which will cause a decrease in the accuracy of the polarization measurement of the LWIR polarized optics system, we propose a method for analyzing and compensating for the polarization aberration of the LWIR secondary imaging optical system containing DMD.Method: Firstly, a diffraction and polarization aberration characteristic transmission model is constructed for the relationship between wavelength and DMD size in the LWIR polarized optics system, and a polarization aberration analysis method based on the Jones vector theory of vector diffraction-polarized light is proposed. Secondly, the polarization aberration and polarizability of DMD are deduced to determine the optimal diffraction order, incidence angle and diffraction efficiency of DMD, and then the secondary imaging LWIR polarized optics system containing DMD is designed to obtain the influence of DMD diffraction characteristics on polarization aberration. Finally, the polarization aberration of the optical system is compensated by tilting the projection objective, coating the lens and reducing the surface incidence angle, so as to solve the influence of diffraction phenomenon on the polarization aberration of the LWIR polarized optical system.Result: Simulation results show that the full-field-of-view modulation transfer function of the system is close to the diffraction limit at the cut-off frequency, the maximum aberration is less than 0.2%, the imaging quality is good, and the two-way attenuation of the whole system is reduced to 1/12 of the original one after compensation.Conclusion: This analytical model can reveal the relationship between diffraction and polarization aberration, and the compensation method can effectively reduce the polarization aberration. -
表 1 (−1,0)、(0,−1)级次Dop平均值
Table 1. (−1, 0), (0, −1) orders Dop averages
Diattenuation (−1, 0) order (0, −1) order D=0.04 0.9954 0.9975 D=0.53 0.9424 0.9685 表 2 光学系统参数
Table 2. Optical system parameters
Parameter Indicator Wavelength 8~12 μm Field of view FOV(X/Y) 2.16°/1.6° F number 1 DMD array size 1024 ×768 pixelDMD pixel size 13.68 μm Detector array size 640×512 pixel Detector pixel size 12 μm -
[1] 单秋莎, 谢梅林, 刘朝晖, 等. 制冷型长波红外光学系统设计[J]. 中国光学(中英文),2022,15(1):72-78. doi: 10.37188/CO.2021-0116SHAN Q SH, XIE M L, LIU ZH H, et al. Design of cooled long-wavelength infrared imaging optical system[J]. Chinese Optics, 2022, 15(1): 72-78. (in Chinese). doi: 10.37188/CO.2021-0116 [2] 王凯凯, 王超, 史浩东, 等. 含数字微镜器件的离轴光学系统偏振像差分析及补偿[J]. 光学学报,2022,42(16):1611001. doi: 10.3788/AOS202242.1611001WANG K K, WANG CH, SHI H D, et al. Polarization aberration analysis and compensation of off-axis optical system with digital micro-mirror device[J]. Acta Optica Sinica, 2022, 42(16): 1611001. (in Chinese). doi: 10.3788/AOS202242.1611001 [3] CHIPMAN R A. Polarization analysis of optical systems[J]. Optical Engineering, 1989, 28(2): 90-99. [4] 李智翔, 吴泉英, 范君柳, 等. 稀疏孔径光学成像系统的偏振特性研究[J]. 光学学报,2024,44(19):1911004. doi: 10.3788/AOS241252LI ZH X, WU Q Y, FAN J L, et al. Research on the polarization characteristics of sparse aperture optical imaging systems[J]. Acta Optica Sinica, 2024, 44(19): 1911004. (in Chinese). doi: 10.3788/AOS241252 [5] 谢熙伟, 胡静, 沈亦兵. 基于数字微镜器件随机编码调制的相位成像[J]. 光学学报,2020,40(23):2311001. doi: 10.3788/AOS202040.2311001XIE X W, HU J, SHEN Y B. Phase imaging based on random coding modulation of digital micro-mirror device[J]. Acta Optica Sinica, 2020, 40(23): 2311001. (in Chinese). doi: 10.3788/AOS202040.2311001 [6] HAN Q, ZHANG J ZH, WANG J, et al. Diffraction analysis for DMD-based scene projectors in the long-wave infrared[J]. Applied Optics, 2016, 55(28): 8016-8021. doi: 10.1364/AO.55.008016 [7] DUDLEY D, DUNCAN W M, SLAUGHTER J. Emerging digital micromirror device (DMD) applications[J]. Proceedings of SPIE, 2003, 4985: 14-25. doi: 10.1117/12.480761 [8] DU Z Y, SUN G F, YANG S ZH, et al. Design of an optical illumination system for a long wave infrared scene projector based on diffraction characteristics[J]. Optics Express, 2023, 31(19): 30267-30284. doi: 10.1364/OE.497570 [9] 韩庆, 王健, 熊峥, 等. 用于长波红外目标模拟器的DMD衍射特性分析[J]. 红外与激光工程,2017,46(5):0504006. doi: 10.3788/IRLA201746.0504006HAN Q, WANG J, XIONG ZH, et al. Diffraction characteristics analysis for DMD-based scene projectors in the long-wave infrared[J]. Infrared and Laser Engineering, 2017, 46(5): 0504006. (in Chinese). doi: 10.3788/IRLA201746.0504006 [10] 钟子迪, 郭琦, 涂智军, 等. 基于液晶偏振光栅的长波红外偏振成像研究[J]. 航空学报,2024,46(3):630523.ZHONG Z D, GUO Q, TU ZH J, et al. Long-wave infrared polarization imaging based on liquid crystal polarization grating[J]. Acta Aeronautica et Astronautica Sinica, 2024, 46(3): 630523. (in Chinese). [11] 张哲, 刘欣悦, 王建立, 等. 分时型长波红外高帧频偏振成像实验研究[J]. 液晶与显示,2019,34(5):508-514. doi: 10.3788/YJYXS20193405.0508ZHANG ZH, LIU X Y, WANG J L, et al. Division-of-time long-wave infrared high frame frequency polarization imaging experiment[J]. Chinese Journal of Liquid Crystals and Displays, 2019, 34(5): 508-514. (in Chinese). doi: 10.3788/YJYXS20193405.0508 [12] BRECKINRIDGE J B, LAM W S T, CHIPMAN R A. Polarization aberrations in astronomical telescopes: the point spread function[J]. Publications of the Astronomical Society of the Pacific, 2015, 127(951): 445-468. doi: 10.1086/681280 [13] YUN G, CRABTREE K, CHIPMAN R A. Skew aberration: a form of polarization aberration[J]. Optics Letters, 2011, 36(20): 4062-4064. doi: 10.1364/OL.36.004062 [14] CHIPMAN R A, CHIPMAN L J. Polarization aberration diagrams[J]. Optical Engineering, 1989, 28(2): 282100. [15] 骆钧尧, 郭智, 黄浩, 等. 多层膜光栅衍射效率的同步辐射研究[J]. 光学学报,2021,41(14):1405001. doi: 10.3788/AOS202141.1405001LUO J Y, GUO ZH, HUANG H, et al. Synchrotron radiation research on diffraction efficiency of multilayer coated grating[J]. Acta Optica Sinica, 2021, 41(14): 1405001. (in Chinese). doi: 10.3788/AOS202141.1405001 [16] 袁夕尧, 胡源, 黄蕴涵, 等. DMD衍射效应及其产生的杂散光分析[J]. 应用光学,2021,42(4):630-635. doi: 10.5768/JAO202142.0401009YUAN X Y, HU Y, HUANG Y H, et al. Analysis of DMD diffraction effect and its generated stray light[J]. Journal of Applied Optics, 2021, 42(4): 630-635. (in Chinese). doi: 10.5768/JAO202142.0401009 [17] MOHARAM M G, GAYLORD T K. Rigorous coupled-wave analysis of metallic surface-relief gratings[J]. Journal of the Optical Society of America A, 1986, 3(11): 1780-1787. doi: 10.1364/JOSAA.3.001780 [18] 丁新辉, 余惠, 李大为, 等. 完全实现自主可控的国产光栅设计软件[J]. 中国激光,2024,51(14):1413002. doi: 10.3788/CJL231420DING X H, YU H, LI D W, et al. Fully domestically controlled grating design software[J]. Chinese Journal of Lasers, 2024, 51(14): 1413002. (in Chinese). doi: 10.3788/CJL231420 [19] 王柯威, 肖康, 孙静, 等. 基于严格耦合波理论的亚波长光栅合成孔径成像分析[J]. 中国激光,2022,49(24):2406001. doi: 10.3788/CJL202249.2406001WANG K W, XIAO K, SUN J, et al. Synthetic aperture imaging analysis of sub-wavelength grating based on rigorous coupled-wave analysis method[J]. Chinese Journal of Lasers, 2022, 49(24): 2406001. (in Chinese). doi: 10.3788/CJL202249.2406001 [20] 谷晓雁, 王春艳, 孙昊, 等. 投影系统中DMD衍射效率的研究[J]. 应用光学,2022,43(2):198-203. doi: 10.5768/JAO202243.0201003GU X Y, WANG CH Y, SUN H, et al. Diffraction efficiency of digital micromirror device in projection system[J]. Journal of Applied Optics, 2022, 43(2): 198-203. (in Chinese). doi: 10.5768/JAO202243.0201003 [21] 巴音贺希格, 唐玉国, 齐向东. 二维周期结构基本方程及其数值算例[J]. 光子学报,2003,32(8):964-968.BAYANHESHIG, TANG Y G, QI X D. The basic functions of two-dimensional periodic structure and their numeric examples[J]. Acta Photonica Sinica, 2003, 32(8): 964-968. (in Chinese). [22] JIANG CH M, YAO D, MENG L T, et al. Suppressing the polarization aberrations by combining reflection and refraction optical groups[J]. Optics Express, 2022, 30(23): 41847-41861. doi: 10.1364/OE.472316 -