留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于矢量衍射的光学系统设计与偏振像差补偿

李英超 于文超 王超 王凯凯 刘嘉楠 王祺 刘壮

李英超, 于文超, 王超, 王凯凯, 刘嘉楠, 王祺, 刘壮. 基于矢量衍射的光学系统设计与偏振像差补偿[J]. 中国光学(中英文). doi: 10.37188/CO.2025-0006
引用本文: 李英超, 于文超, 王超, 王凯凯, 刘嘉楠, 王祺, 刘壮. 基于矢量衍射的光学系统设计与偏振像差补偿[J]. 中国光学(中英文). doi: 10.37188/CO.2025-0006
LI Ying-chao, YU Wen-chao, WANG Chao, WANG Kai-kai, LIU Jia-nan, WANG Qi, LIU Zhuang. Optical system design and polarization aberration compensation based on vector diffraction[J]. Chinese Optics. doi: 10.37188/CO.2025-0006
Citation: LI Ying-chao, YU Wen-chao, WANG Chao, WANG Kai-kai, LIU Jia-nan, WANG Qi, LIU Zhuang. Optical system design and polarization aberration compensation based on vector diffraction[J]. Chinese Optics. doi: 10.37188/CO.2025-0006

基于矢量衍射的光学系统设计与偏振像差补偿

cstr: 32171.14.CO.2025-0006
基金项目: 国家自然科学基金项目(No. 62375027,No. 62127813);重庆市自然科学基金项目(No. CSTB2023NSCQ-MSX0504);吉林省自然科学基金项目(No. YDZJ202201ZYTS411,No. 222621JC010498735);吉林省教育厅(No. JJKH20220742KJ)
详细信息
    作者简介:

    王 超(1986—),女,吉林长春人,博士,教授,博士生导师,2009 年于哈尔滨工程大学获得学士学位,2014 年于中国科学院长春光学精密机械与物理研究所获得博士学位,现为长春理工大学教授,主要从事先进光学系统设计、超分辨率成像方面的研究。E-mail:nicklo19992009@163.com

  • 中图分类号: O434.3

Optical system design and polarization aberration compensation based on vector diffraction

Funds: Supported by National Natural Science Foundation of China (No. 62375027, No. 62127813); Chongqing Natural Science Foundation project (No. CSTB2023NSCQ-MSX0504); Natural Science Foundation project of Jilin Province (No. YDZJ202201ZYTS411, No. 222621JC010498735); Education Department of Jilin Province (No. JJKH20220742KJ)
More Information
  • 摘要:

    目的:针对含数字微镜阵列(DMD)的长波红外偏振光学系统中产生的衍射现象会导致系统中偏振像差发生变化,从而造成长波红外偏振光学系统偏振测量精度下降的问题,提出一种含DMD的长波红外二次成像光学系统偏振像差的分析及补偿方法。方法:首先,构建长波红外偏振光学系统中波长与DMD尺寸关系的衍射与偏振像差特性传输模型,提出基于矢量衍射—偏振光琼斯矢量理论的偏振像差分析方法。其次,推导DMD的偏振像差和偏振度情况,确定DMD的最佳衍射级次、入射角与衍射效率,进而设计含DMD的二次成像长波红外偏振光学系统,得到DMD衍射特性对偏振像差的影响情况。最后,通过倾斜投影物镜、镜片镀膜及减小表面入射角来补偿光学系统的偏振像差,以解决衍射现象对长波红外偏振光学系统偏振像差产生的影响。结果:仿真结果表明,系统全视场调制传递函数在截止频率处均接近衍射极限,最大畸变小于0.2%,成像质量良好,整体系统的二向衰减经补偿后减小到原来的1/12。结论:该分析模型能够揭示衍射与偏振像差之间的关系,补偿方法可以使偏振像差有效地降低。

     

  • 图 1  含DMD的长波红外偏振光学系统组成

    Figure 1.  Composition of LWIR polarization optics system containing DMD

    图 2  DMD等效示意图

    Figure 2.  Schematic diagram of the DMD equivalence

    图 3  各衍射级次反射方位角、高度角与入射方位角、高度角关系

    Figure 3.  Reflection orientation and altitude angle vs. incident orientation and altitude angle for each diffraction order

    图 4  D=0.04时(−1, 0)与(0, −1)级次的Dop分布

    Figure 4.  Dop distribution of (−1, 0) and (0, −1) orders at D=0.04

    图 5  D=0.53时(−1, 0)与(0, −1)级次的Dop分布

    Figure 5.  Dop distribution of (−1, 0) and (0, −1) orders at D=0.53

    图 6  TE、TM偏振光衍射效率与入射高度角的关系

    Figure 6.  Diffraction efficiency of TE and TM polarized light is plotted against the angle of incidence altitude

    图 7  光学系统结构

    Figure 7.  Optical system structure

    图 8  整体光学系统像质评价

    Figure 8.  Image quality evaluation of the whole optical system

    图 9  系统及DMD面上的二向衰减

    Figure 9.  Diattenuation on the system and DMD surface

    图 10  补偿后系统的二向衰减

    Figure 10.  Diattenuation of the compensated system

    图 11  补偿后整体光学系统像质评价

    Figure 11.  Image quality evaluation of the whole optical system after compensation

    表  1  (−1,0)、(0,−1)级次Dop平均值

    Table  1.   (−1, 0), (0, −1) orders Dop averages

    Diattenuation (−1, 0) order (0, −1) order
    D=0.04 0.9954 0.9975
    D=0.53 0.9424 0.9685
    下载: 导出CSV

    表  2  光学系统参数

    Table  2.   Optical system parameters

    Parameter Indicator
    Wavelength 8~12 μm
    Field of view FOV(X/Y) 2.16°/1.6°
    F number 1
    DMD array size 1024×768 pixel
    DMD pixel size 13.68 μm
    Detector array size 640×512 pixel
    Detector pixel size 12 μm
    下载: 导出CSV
  • [1] 单秋莎, 谢梅林, 刘朝晖, 等. 制冷型长波红外光学系统设计[J]. 中国光学(中英文),2022,15(1):72-78. doi: 10.37188/CO.2021-0116

    SHAN Q SH, XIE M L, LIU ZH H, et al. Design of cooled long-wavelength infrared imaging optical system[J]. Chinese Optics, 2022, 15(1): 72-78. (in Chinese). doi: 10.37188/CO.2021-0116
    [2] 王凯凯, 王超, 史浩东, 等. 含数字微镜器件的离轴光学系统偏振像差分析及补偿[J]. 光学学报,2022,42(16):1611001. doi: 10.3788/AOS202242.1611001

    WANG K K, WANG CH, SHI H D, et al. Polarization aberration analysis and compensation of off-axis optical system with digital micro-mirror device[J]. Acta Optica Sinica, 2022, 42(16): 1611001. (in Chinese). doi: 10.3788/AOS202242.1611001
    [3] CHIPMAN R A. Polarization analysis of optical systems[J]. Optical Engineering, 1989, 28(2): 90-99.
    [4] 李智翔, 吴泉英, 范君柳, 等. 稀疏孔径光学成像系统的偏振特性研究[J]. 光学学报,2024,44(19):1911004. doi: 10.3788/AOS241252

    LI ZH X, WU Q Y, FAN J L, et al. Research on the polarization characteristics of sparse aperture optical imaging systems[J]. Acta Optica Sinica, 2024, 44(19): 1911004. (in Chinese). doi: 10.3788/AOS241252
    [5] 谢熙伟, 胡静, 沈亦兵. 基于数字微镜器件随机编码调制的相位成像[J]. 光学学报,2020,40(23):2311001. doi: 10.3788/AOS202040.2311001

    XIE X W, HU J, SHEN Y B. Phase imaging based on random coding modulation of digital micro-mirror device[J]. Acta Optica Sinica, 2020, 40(23): 2311001. (in Chinese). doi: 10.3788/AOS202040.2311001
    [6] HAN Q, ZHANG J ZH, WANG J, et al. Diffraction analysis for DMD-based scene projectors in the long-wave infrared[J]. Applied Optics, 2016, 55(28): 8016-8021. doi: 10.1364/AO.55.008016
    [7] DUDLEY D, DUNCAN W M, SLAUGHTER J. Emerging digital micromirror device (DMD) applications[J]. Proceedings of SPIE, 2003, 4985: 14-25. doi: 10.1117/12.480761
    [8] DU Z Y, SUN G F, YANG S ZH, et al. Design of an optical illumination system for a long wave infrared scene projector based on diffraction characteristics[J]. Optics Express, 2023, 31(19): 30267-30284. doi: 10.1364/OE.497570
    [9] 韩庆, 王健, 熊峥, 等. 用于长波红外目标模拟器的DMD衍射特性分析[J]. 红外与激光工程,2017,46(5):0504006. doi: 10.3788/IRLA201746.0504006

    HAN Q, WANG J, XIONG ZH, et al. Diffraction characteristics analysis for DMD-based scene projectors in the long-wave infrared[J]. Infrared and Laser Engineering, 2017, 46(5): 0504006. (in Chinese). doi: 10.3788/IRLA201746.0504006
    [10] 钟子迪, 郭琦, 涂智军, 等. 基于液晶偏振光栅的长波红外偏振成像研究[J]. 航空学报,2024,46(3):630523.

    ZHONG Z D, GUO Q, TU ZH J, et al. Long-wave infrared polarization imaging based on liquid crystal polarization grating[J]. Acta Aeronautica et Astronautica Sinica, 2024, 46(3): 630523. (in Chinese).
    [11] 张哲, 刘欣悦, 王建立, 等. 分时型长波红外高帧频偏振成像实验研究[J]. 液晶与显示,2019,34(5):508-514. doi: 10.3788/YJYXS20193405.0508

    ZHANG ZH, LIU X Y, WANG J L, et al. Division-of-time long-wave infrared high frame frequency polarization imaging experiment[J]. Chinese Journal of Liquid Crystals and Displays, 2019, 34(5): 508-514. (in Chinese). doi: 10.3788/YJYXS20193405.0508
    [12] BRECKINRIDGE J B, LAM W S T, CHIPMAN R A. Polarization aberrations in astronomical telescopes: the point spread function[J]. Publications of the Astronomical Society of the Pacific, 2015, 127(951): 445-468. doi: 10.1086/681280
    [13] YUN G, CRABTREE K, CHIPMAN R A. Skew aberration: a form of polarization aberration[J]. Optics Letters, 2011, 36(20): 4062-4064. doi: 10.1364/OL.36.004062
    [14] CHIPMAN R A, CHIPMAN L J. Polarization aberration diagrams[J]. Optical Engineering, 1989, 28(2): 282100.
    [15] 骆钧尧, 郭智, 黄浩, 等. 多层膜光栅衍射效率的同步辐射研究[J]. 光学学报,2021,41(14):1405001. doi: 10.3788/AOS202141.1405001

    LUO J Y, GUO ZH, HUANG H, et al. Synchrotron radiation research on diffraction efficiency of multilayer coated grating[J]. Acta Optica Sinica, 2021, 41(14): 1405001. (in Chinese). doi: 10.3788/AOS202141.1405001
    [16] 袁夕尧, 胡源, 黄蕴涵, 等. DMD衍射效应及其产生的杂散光分析[J]. 应用光学,2021,42(4):630-635. doi: 10.5768/JAO202142.0401009

    YUAN X Y, HU Y, HUANG Y H, et al. Analysis of DMD diffraction effect and its generated stray light[J]. Journal of Applied Optics, 2021, 42(4): 630-635. (in Chinese). doi: 10.5768/JAO202142.0401009
    [17] MOHARAM M G, GAYLORD T K. Rigorous coupled-wave analysis of metallic surface-relief gratings[J]. Journal of the Optical Society of America A, 1986, 3(11): 1780-1787. doi: 10.1364/JOSAA.3.001780
    [18] 丁新辉, 余惠, 李大为, 等. 完全实现自主可控的国产光栅设计软件[J]. 中国激光,2024,51(14):1413002. doi: 10.3788/CJL231420

    DING X H, YU H, LI D W, et al. Fully domestically controlled grating design software[J]. Chinese Journal of Lasers, 2024, 51(14): 1413002. (in Chinese). doi: 10.3788/CJL231420
    [19] 王柯威, 肖康, 孙静, 等. 基于严格耦合波理论的亚波长光栅合成孔径成像分析[J]. 中国激光,2022,49(24):2406001. doi: 10.3788/CJL202249.2406001

    WANG K W, XIAO K, SUN J, et al. Synthetic aperture imaging analysis of sub-wavelength grating based on rigorous coupled-wave analysis method[J]. Chinese Journal of Lasers, 2022, 49(24): 2406001. (in Chinese). doi: 10.3788/CJL202249.2406001
    [20] 谷晓雁, 王春艳, 孙昊, 等. 投影系统中DMD衍射效率的研究[J]. 应用光学,2022,43(2):198-203. doi: 10.5768/JAO202243.0201003

    GU X Y, WANG CH Y, SUN H, et al. Diffraction efficiency of digital micromirror device in projection system[J]. Journal of Applied Optics, 2022, 43(2): 198-203. (in Chinese). doi: 10.5768/JAO202243.0201003
    [21] 巴音贺希格, 唐玉国, 齐向东. 二维周期结构基本方程及其数值算例[J]. 光子学报,2003,32(8):964-968.

    BAYANHESHIG, TANG Y G, QI X D. The basic functions of two-dimensional periodic structure and their numeric examples[J]. Acta Photonica Sinica, 2003, 32(8): 964-968. (in Chinese).
    [22] JIANG CH M, YAO D, MENG L T, et al. Suppressing the polarization aberrations by combining reflection and refraction optical groups[J]. Optics Express, 2022, 30(23): 41847-41861. doi: 10.1364/OE.472316
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  65
  • HTML全文浏览量:  39
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-07
  • 录用日期:  2025-02-26
  • 网络出版日期:  2025-03-28

目录

    /

    返回文章
    返回