Research on a domestic 3D visualization diffractive waveguide simulation module based on ray- field tracing
-
摘要:
衍射光波导因其轻薄的外形、大视场角和大的眼动范围,成为实现增强现实(Augmented reality, AR)近眼显示技术最有前景的方案之一。目前商业化AR光波导仿真软件大多由国外公司开发,未见到有国产3D可视化的光波导仿真设计软件报道。据我们所知,本文工作为国内首款自主研发的基于光线场追迹的3D可视化光波导设计仿真模块。并应用该仿真模块设计了一款二维出瞳扩展的衍射光波导,展示了从光栅的
域分析、光波导中光栅各个区域的自动布局、光波导优化到光线场追迹仿真的完整设计流程。该仿真模块不仅能够对单个的波导器件进行仿真,还能够对整个近眼显示光学系统进行仿真,包括微显示屏、微型投影光机与人眼模型,实现从微观到宏观尺度仿真,体现了该光波导仿真模块的功能和优势。该光波导仿真设计模块为国内光学工程师提供了一种高效、稳定的光波导设计仿真工具,将助力我国AR光技术产业化的发展。k Abstract:Diffractive waveguide, known for their lightweight, wide field of view, and large eyebox, have emerged as one of the most promising solutions for augmented reality (AR) near-eye display technologies. However, most commercially available AR waveguide simulation software is developed by foreign companies, and domestic advancements in 3D visualization software for optical waveguide design and simulation remain notably absent. To our knowledge, this work introduces the first domestically developed 3D visualization module for optical waveguide design and simulation based on ray-field tracing. Using this module, we engineered a two-dimensional exit-pupil-expansion diffractive waveguide, demonstrating a systematic design workflow. The workflow integrates
-domain analysis, automated layout generation of grating regions within the optical waveguide, waveguide optimization, and ray-field tracing simulations, establishing a cohesive methodology for device development. The module extends beyond single-waveguide simulations to system-level analyses of near-eye displays, incorporating micro-dislplays, micro-projectors, and human eye models. By bridging microscopic and macroscopic scales, it enables holistic performance evaluation of AR optical systems, highlighting its capabilities and technical advantages. This module provides a robust and efficient platform for domestic optical engineers to advance optical waveguide design and simulation, thereby accelerating the industrialization and technological progression of AR optics in our country.k -
图 3 (a)单一测试视场与转折区域和输出耦合区域的有效作用位置,(b)多个有效作用区域的集合划定转折区域和输出耦合区域
Figure 3. (a) Effective region positions of the single test light with the redirection coupling region and output coupling region, (b) Aggregation of multiple effective interaction regions delimiting the redirection coupling region and output coupling Region
表 1 输入光的k矢量和角度信息
Table 1. k-vector and angle information of the incident light
θH(°) θV(°) kinx/|kin| kiny/|kin| θin(°) φin(°) 输入光 −8 −6 − 0.1375 0.1032 9.9 143.1 −8 0 − 0.1383 0 7.95 180 −8 6 − 0.1375 − 0.1032 9.9 216.9 0 −6 0 0.1042 5.98 90 0 0 0 0 0 0 0 6 0 − 0.1042 5.98 270 8 −6 0.1375 0.1032 9.9 36.9 8 0 0.1383 0 7.95 0 8 6 0.1375 − 0.1032 9.9 323.1 表 2 输入耦合器偏转后光线的k矢量和角度信息
Table 2. k-vector and angular information of the light deflected by the input grating coupler
kg1x/|kg1| kg1y/|kg1| θg1(°) φg1(°) 输入耦合光栅
θG=90°
φG=300°0.502 − 1.0045 41.34 296.55 0.5013 − 1.1077 45.66 294.35 0.502 − 1.2109 50.45 292.52 0.6395 − 1.0036 44.43 302.51 0.6395 − 1.1077 48.8 300 0.6395 − 1.2119 53.71 297.82 0.7771 − 1.0045 48.34 307.72 0.7778 − 1.1077 52.77 305.08 0.7771 − 1.2109 57.82 302.69 表 3 转折光线偏转后光线的k矢量和角度信息
Table 3. k-vector and angular information of the light deflected by the redirection grating coupler
kg2x/|kg2| kg2y/|kg2| θg2(°) φg2(°) 转折光栅
θG=90°
φG=65°1.1221 0.3253 43.41 16.17 1.1214 0.2221 42.26 11.2 1.1221 0.1189 41.59 6.05 1.2596 0.3263 49.94 14.52 1.2596 0.2221 48.8 10 1.2596 0.118 48.09 5.35 1.3972 0.3253 57.55 13.11 1.3979 0.2221 56.37 9.03 1.3972 0.1189 55.57 4.87 表 4 输出耦合器偏转后光线的k矢量和角度信息
Table 4. k-vector and angular information of the light deflected by the output grating coupler
koutx/|kout| kouty/|kout| θout(°) φout(°) 输出耦合光栅
θG=90°
φG=180°− 0.1375 0.1032 9.9 143.13 − 0.1383 0 7.95 180 − 0.1375 − 0.1032 9.9 216.87 0 0.1042 5.98 90 0 0 0 0 0 − 0.1042 5.98 270 0.1375 0.1032 9.9 36.87 0.1383 0 7.95 0 0.1375 − 0.1032 9.9 323.13 表 5 输出耦合区域的边界坐标点
Table 5. Boundary coordinate points of the output coupling region
x(mm) y(mm) 输出耦合区域 18.79 11.10 18.79 −3.10 1.21 −3.10 1.21 11.10 表 6 转折区域的边界坐标点
Table 6. Boundary coordinate points of the redirection coupling region
x(mm) y(mm) 转折区域 −17.876 8.479813 − 13.3992 − 2.31754 − 10.7563 − 6.85092 − 7.83561 − 10.8154 − 3.93101 − 9.68321 0.108358 − 6.14503 − 8.27717 4.69675 −12.983 9.885263 − 17.4894 9.501308 − 17.6559 9.067004 表 7 衍射光波导中三个耦合光栅及其子区域的光栅参数
Table 7. Grating parameters of the three Gratings and their subregions in the diffractive waveguide
波导区域 光栅类型 高度(um) a(°) b(°) 输入耦合光栅 闪耀光栅 0.15 34.902 34.902 转折光栅—子区域1 0.08 90 12.05 转折光栅—子区域2 0.08 90 12.05 转折光栅—子区域3 0.07 90 10.58 转折光栅—子区域4 0.11 90 16.36 输出耦合光栅—子区域1 0.08 34.82 14.25 输出耦合光栅—子区域2 0.1 41.009 17.613 输出耦合光栅—子区域3 0.12 46.219 20.85 输出耦合光栅—子区域4 0.11 43.73 19.25 表 8 各区域亮度值及均匀度分布
Table 8. Luminance value and uniformity distribution of each region
视场角(°) 能量 I1 I2 I3 I4 I5 I6 I7 I8 I9 出瞳均匀性(%) (−8, −6) 5.7E-06 4.2E-06 2.5E-06 9.2E-06 9.0E-06 5.6E-06 6.1E-06 4.7E-06 2.9E-06 43.36 (−8, 0) 4.3E-06 3.9E-06 2.4E-06 9.7E-06 8.9E-06 5.1E-06 7.8E-06 6.7E-06 3.9E-06 40.04 (−8, 6) 4.6E-06 4.0E-06 2.7E-06 9.1E-06 8.5E-06 5.2E-06 8.3E-06 6.1E-06 4.0E-06 45.61 (0, −6) 8.8E-06 4.9E-06 3.0E-06 1.2E-05 1.1E-05 6.6E-06 7.2E-06 5.1E-06 3.2E-06 40.83 (0, 0) 7.5E-06 4.6E-06 3.0E-06 1.1E-05 1.1E-05 6.3E-06 9.0E-06 7.2E-06 4.4E-06 42.27 (0, 6) 6.8E-06 5.0E-06 3.5E-06 1.0E-05 1.0E-05 6.6E-06 8.7E-06 6.9E-06 4.1E-06 50.11 (8, −6) 1.1E-05 5.9E-06 3.9E-06 1.6E-05 1.3E-05 7.9E-06 8.8E-06 6.2E-06 3.8E-06 39.06 (8, 0) 9.4E-06 5.5E-06 3.8E-06 1.5E-05 1.2E-05 7.7E-06 1.1E-05 7.7E-06 4.6E-06 40.87 (8, 6) 9.8E-06 5.9E-06 4.1E-06 1.3E-05 1.3E-05 8.4E-06 1.0E-05 7.5E-06 4.5E-06 47.41 视场均匀性(%) 57.54 79.15 74.94 73.04 79.08 75.18 70.36 76.03 78.12 -
[1] 史晓刚, 薛正辉, 李会会, 等. 增强现实显示技术综述[J]. 中国光学,2021,14(5):1146-1161. doi: 10.37188/CO.2021-0032SHI X G, XUE ZH H, LI H H, et al. Review of augmented reality display technology[J]. Chinese Optics, 2021, 14(5): 1146-1161. (in Chinese). doi: 10.37188/CO.2021-0032 [2] DING Y Q, YANG Q, LI Y N Q, et al. Waveguide-based augmented reality displays: perspectives and challenges[J]. eLight, 2023, 3(1): 24. doi: 10.1186/s43593-023-00057-z [3] ROLLAND J P, GOODSELL J. Waveguide-based augmented reality displays: a highlight[J]. Light: Science & Applications, 2024, 13(1): 22. [4] LU Y Q, LI Y. Planar liquid crystal polarization optics for near-eye displays[J]. Light: Science & Applications, 2021, 10(1): 122. [5] SONG W T, LIANG X N, LI SH Q, et al. Retinal projection near‐eye displays with Huygens’ metasurfaces[J]. Advanced Optical Materials, 2023, 11(5): 2202348. doi: 10.1002/adom.202202348 [6] PARK J H, LEE B. Holographic techniques for augmented reality and virtual reality near-eye displays[J]. Light: Advanced Manufacturing, 2022, 3(1): 137-150. [7] CHENG D W, DUAN J X, CHEN H L, et al. Freeform OST-HMD system with large exit pupil diameter and vision correction capability[J]. Photonics Research, 2022, 10(1): 21-32. doi: 10.1364/PRJ.440018 [8] CHENG D W, WANG Q W, LIU Y, et al. Design and manufacture AR head-mounted displays: a review and outlook[J]. Light: Advanced Manufacturing, 2021, 2(3): 350-369. [9] JANG C W, BANG K, CHAE M, et al. Waveguide holography for 3D augmented reality glasses[J]. Nature Communications, 2024, 15(1): 66. doi: 10.1038/s41467-023-44032-1 [10] DING Y Q, LI Y N Q, YANG Q, et al. Design optimization of polarization volume gratings for full-color waveguide-based augmented reality displays[J]. Journal of the Society for Information Display, 2023, 31(5): 380-386. doi: 10.1002/jsid.1206 [11] XIONG J H, WU S T. Planar liquid crystal polarization optics for augmented reality and virtual reality: from fundamentals to applications[J]. eLight, 2021, 1: 3. doi: 10.1186/s43593-021-00003-x [12] LI ZH, LUO X H, WANG J, et al. Phase space framework enables a variable-scale diffraction model for coherent imaging and display[J]. Photonics Research, 2024, 12(9): 1937. doi: 10.1364/PRJ.523568 [13] WENG X Y, SONG Q, LI X M, et al. Free-space creation of ultralong anti-diffracting beam with multiple energy oscillations adjusted using optical pen[J]. Nature Communications, 2018, 9(1): 5035. doi: 10.1038/s41467-018-07282-y [14] CHENG H H, CHEN Y, CHRISTOPHE A, et al. Optimization and tolerance for an exit pupil expander with 2D grating as out-coupler[C]. Proceedings of SPIE 12449, Optical Architectures for Displays and Sensing in Augmented, Virtual, and Mixed Reality (AR, VR, MR) IV, SPIE, 2023: 124490X. [15] YAN SH F, ZHANG E Q, GUO J D, et al. Eyebox uniformity optimization over the full field of view for optical waveguide displays based on linked list processing[J]. Optics Express, 2022, 30(21): 38139-38151. doi: 10.1364/OE.472089 [16] NI D W, CHENG D W, LIU Y, et al. Uniformity improvement of two-dimensional surface relief grating waveguide display using particle swarm optimization[J]. Optics Express, 2022, 30(14): 24523-24543. doi: 10.1364/OE.462384 [17] LI Z Y, GAO CH, LI H F, et al. Angular uniformity improvement of diffractive waveguide display based on region geometry optimization[J]. Applied Optics, 2024, 63(10): 2494-2502. doi: 10.1364/AO.515428 [18] LEVOLA T. Diffractive optics for virtual reality displays[J]. Journal of the Society for Information Display, 2006, 14(5): 467-475. doi: 10.1889/1.2206112 [19] KONG D Q, ZHAO ZH, SHI X G, et al. Optimization of gratings in a diffractive waveguide using relative-direction-cosine diagrams[J]. Optics Express, 2021, 29(22): 36720-36733. doi: 10.1364/OE.433515 [20] 李俊昌. 衍射计算及数字全息[M]. 北京: 科学出版社, 2014.LI J CH. Diffration Calculation and Digital Holography[M]. Beijing: Science Press, 2014. (in Chinese) (查阅网上资料, 未找到本条文献英文信息, 请确认) . [21] GOODMAN J W. Introduction to Fourier Optics[M]. 3rd ed. Englewood: Roberts and Company Publishers, 2005. [22] MOHARAM M G, GAYLORD T K, GRANN E B, et al. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings[J]. Journal of the Optical Society of America A, 1995, 12(5): 1068-1076. doi: 10.1364/JOSAA.12.001068 [23] MOHARAM M G, POMMET D A, GRANN E B, et al. Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach[J]. Journal of the Optical Society of America A, 1995, 12(5): 1077-1086. doi: 10.1364/JOSAA.12.001077 -