留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于光线场追迹的国产3D可视化衍射光波导仿真模块研究

覃嘉佳 宋强 刘祥彪 张善文 段辉高 周常河

覃嘉佳, 宋强, 刘祥彪, 张善文, 段辉高, 周常河. 基于光线场追迹的国产3D可视化衍射光波导仿真模块研究[J]. 中国光学(中英文). doi: 10.37188/CO.2025-0002
引用本文: 覃嘉佳, 宋强, 刘祥彪, 张善文, 段辉高, 周常河. 基于光线场追迹的国产3D可视化衍射光波导仿真模块研究[J]. 中国光学(中英文). doi: 10.37188/CO.2025-0002
QIN Jia-jia, SONG Qiang, LIU Xiang-biao, ZHANG Shan-wen, DUAN Hui-gao, ZHOU Chang-he. Research on a domestic 3D visualization diffractive waveguide simulation module based on ray- field tracing[J]. Chinese Optics. doi: 10.37188/CO.2025-0002
Citation: QIN Jia-jia, SONG Qiang, LIU Xiang-biao, ZHANG Shan-wen, DUAN Hui-gao, ZHOU Chang-he. Research on a domestic 3D visualization diffractive waveguide simulation module based on ray- field tracing[J]. Chinese Optics. doi: 10.37188/CO.2025-0002

基于光线场追迹的国产3D可视化衍射光波导仿真模块研究

cstr: 32171.14.CO.2025-0002
基金项目: 国家自然科学基金(No. 62205124,No. U21A20509);广东省珠江人才计划(No. 2019ZT08Z779)
详细信息
    作者简介:

    覃嘉佳(2000—),女,广西河池人,硕士研究生,2022年于江南大学理学院获得学士学位,现为暨南大学物理与光电工程学院硕士研究生, 主要从事AR衍射光波导的研究。E-mail:qinjiajia@stu2022.jnu.edu.cn

    宋 强(1987—),男,湖南衡阳人,博士,硕士生导师,2020年于法国国立高等矿业与电信学院获得博士学位,现为湖南大学粤港澳大湾区创新研究院研究员,主要从事物理光学模型研究和光学仿真软件开发。E-mail:nanosong@hnu-gba.com

    张善文(1980—),男,吉林通化人,博士、研究员、博士生导师,2009年于中国科学院长春光机所获得博士学位。现为暨南大学物理与光电工程学院研究员、《光学精密工程》编委、中国光学学会全息与光信息处理专业委员会委员,中科院青年创新促进会会员。主要从事衍射光栅、AR-HUD光波导、光谱仪器等研究。E-mail:zhshwen007@163.com

  • 中图分类号: TN25

Research on a domestic 3D visualization diffractive waveguide simulation module based on ray- field tracing

Funds: Supported by The National Natural Science Foundation of China (No. 62205124, No. U21A20509); Guangdong Provincial Pearl River Talents Program (No. 2019ZT08Z779)
More Information
  • 摘要:

    衍射光波导因其轻薄的外形、大视场角和大的眼动范围,成为实现增强现实(Augmented reality, AR)近眼显示技术最有前景的方案之一。目前商业化AR光波导仿真软件大多由国外公司开发,未见到有国产3D可视化的光波导仿真设计软件报道。据我们所知,本文工作为国内首款自主研发的基于光线场追迹的3D可视化光波导设计仿真模块。并应用该仿真模块设计了一款二维出瞳扩展的衍射光波导,展示了从光栅的k域分析、光波导中光栅各个区域的自动布局、光波导优化到光线场追迹仿真的完整设计流程。该仿真模块不仅能够对单个的波导器件进行仿真,还能够对整个近眼显示光学系统进行仿真,包括微显示屏、微型投影光机与人眼模型,实现从微观到宏观尺度仿真,体现了该光波导仿真模块的功能和优势。该光波导仿真设计模块为国内光学工程师提供了一种高效、稳定的光波导设计仿真工具,将助力我国AR光技术产业化的发展。

     

  • 图 1  二维出瞳扩展衍射光波导中的光线传播示意图

    Figure 1.  Schematic of ray propagation in 2D exit pupil expansion diffractive waveguide.

    图 2  (a)二维出瞳扩展衍射光波导对应的归一化k矢量图,(b)衍射光波导中的三组光栅不匹配

    Figure 2.  (a) Corresponding normalized k-vector diagram of the 2D exit pupil expansion diffractive waveguide, (b) Mismatch among three sets of gratings in the diffractive optical waveguide.

    图 3  (a)单一测试视场与转折区域和输出耦合区域的有效作用位置,(b)多个有效作用区域的集合划定转折区域和输出耦合区域

    Figure 3.  (a) Effective region positions of the single test light with the redirection coupling region and output coupling region, (b) Aggregation of multiple effective interaction regions delimiting the redirection coupling region and output coupling Region

    图 4  衍射光波导的分区示意图

    Figure 4.  Schematic diagram of the partitioning of diffractive waveguide

    图 5  衍射光波导设计优化流程图

    Figure 5.  Flowchart of the design and optimization process for the diffractive waveguide

    图 6  可视化3D衍射光波导模组示意图

    Figure 6.  Schematic diagram of the 3D visualization diffractive waveguide module

    图 7  (a)投影光机系统布局,(b)投影光学系统的MTF

    Figure 7.  (a) Optical layout of the projection optics, (b) MTF of the projection optics

    图 8  9个视场角在出瞳处的辐照度分布

    Figure 8.  Luminance Distribution at the exit pupil for Nine Angles

    图 9  (a)在eyebox平面选取不同的出瞳区域,(b)选择不同的测试视场角

    Figure 9.  (a) Selection of different exit pupil regions on the eyebox plane, (b) Selection of different test angles

    图 10  不同视场角下的波前PSF

    Figure 10.  The wavefront PSF under different angles

    图 11  不同视场角下的衍射MTF

    Figure 11.  The Diffraction MTF at different angles

    图 12  特定的偏振光入射时可以查看在眼动范围平面处的光的偏振态

    Figure 12.  The polarization state of light can be observed at the eyebox when a specific polarized light is incident.

    图 13  Rsoft和自主开发的光栅计算模块效率对比

    Figure 13.  Rsoft and self-developed diffraction calculation module diffraction efficiency comparison

    图 14  自主光波导模块与LightTools的光线路径对比

    Figure 14.  Comparison of Ray paths between the autonomous optical waveguide module and LightTools

    表  1  输入光的k矢量和角度信息

    Table  1.   k-vector and angle information of the incident light

    θH(°) θV(°) kinx/|kin| kiny/|kin| θin(°) φin(°)
    输入光 −8 −6 0.1375 0.1032 9.9 143.1
    −8 0 0.1383 0 7.95 180
    −8 6 0.1375 0.1032 9.9 216.9
    0 −6 0 0.1042 5.98 90
    0 0 0 0 0 0
    0 6 0 0.1042 5.98 270
    8 −6 0.1375 0.1032 9.9 36.9
    8 0 0.1383 0 7.95 0
    8 6 0.1375 0.1032 9.9 323.1
    下载: 导出CSV

    表  2  输入耦合器偏转后光线的k矢量和角度信息

    Table  2.   k-vector and angular information of the light deflected by the input grating coupler

    kg1x/|kg1| kg1y/|kg1| θg1(°) φg1(°)
    输入耦合光栅
    θG=90°
    φG=300°
    0.502 1.0045 41.34 296.55
    0.5013 1.1077 45.66 294.35
    0.502 1.2109 50.45 292.52
    0.6395 1.0036 44.43 302.51
    0.6395 1.1077 48.8 300
    0.6395 1.2119 53.71 297.82
    0.7771 1.0045 48.34 307.72
    0.7778 1.1077 52.77 305.08
    0.7771 1.2109 57.82 302.69
    下载: 导出CSV

    表  3  转折光线偏转后光线的k矢量和角度信息

    Table  3.   k-vector and angular information of the light deflected by the redirection grating coupler

    kg2x/|kg2| kg2y/|kg2| θg2(°) φg2(°)
    转折光栅
    θG=90°
    φG=65°
    1.1221 0.3253 43.41 16.17
    1.1214 0.2221 42.26 11.2
    1.1221 0.1189 41.59 6.05
    1.2596 0.3263 49.94 14.52
    1.2596 0.2221 48.8 10
    1.2596 0.118 48.09 5.35
    1.3972 0.3253 57.55 13.11
    1.3979 0.2221 56.37 9.03
    1.3972 0.1189 55.57 4.87
    下载: 导出CSV

    表  4  输出耦合器偏转后光线的k矢量和角度信息

    Table  4.   k-vector and angular information of the light deflected by the output grating coupler

    koutx/|kout| kouty/|kout| θout(°) φout(°)
    输出耦合光栅
    θG=90°
    φG=180°
    0.1375 0.1032 9.9 143.13
    0.1383 0 7.95 180
    0.1375 0.1032 9.9 216.87
    0 0.1042 5.98 90
    0 0 0 0
    0 0.1042 5.98 270
    0.1375 0.1032 9.9 36.87
    0.1383 0 7.95 0
    0.1375 0.1032 9.9 323.13
    下载: 导出CSV

    表  5  输出耦合区域的边界坐标点

    Table  5.   Boundary coordinate points of the output coupling region

    x(mm) y(mm)
    输出耦合区域 18.79 11.10
    18.79 −3.10
    1.21 −3.10
    1.21 11.10
    下载: 导出CSV

    表  6  转折区域的边界坐标点

    Table  6.   Boundary coordinate points of the redirection coupling region

    x(mm) y(mm)
    转折区域−17.8768.479813
    13.39922.31754
    10.75636.85092
    7.8356110.8154
    3.931019.68321
    0.1083586.14503
    8.277174.69675
    −12.9839.885263
    17.48949.501308
    17.65599.067004
    下载: 导出CSV

    表  7  衍射光波导中三个耦合光栅及其子区域的光栅参数

    Table  7.   Grating parameters of the three Gratings and their subregions in the diffractive waveguide

    波导区域光栅类型高度(um)a(°)b(°)
    输入耦合光栅闪耀光栅0.1534.90234.902
    转折光栅—子区域10.089012.05
    转折光栅—子区域20.089012.05
    转折光栅—子区域30.079010.58
    转折光栅—子区域40.119016.36
    输出耦合光栅—子区域10.0834.8214.25
    输出耦合光栅—子区域20.141.00917.613
    输出耦合光栅—子区域30.1246.21920.85
    输出耦合光栅—子区域40.1143.7319.25
    下载: 导出CSV

    表  8  各区域亮度值及均匀度分布

    Table  8.   Luminance value and uniformity distribution of each region

    视场角(°) 能量
    I1 I2 I3 I4 I5 I6 I7 I8 I9 出瞳均匀性(%)
    (−8, −6) 5.7E-06 4.2E-06 2.5E-06 9.2E-06 9.0E-06 5.6E-06 6.1E-06 4.7E-06 2.9E-06 43.36
    (−8, 0) 4.3E-06 3.9E-06 2.4E-06 9.7E-06 8.9E-06 5.1E-06 7.8E-06 6.7E-06 3.9E-06 40.04
    (−8, 6) 4.6E-06 4.0E-06 2.7E-06 9.1E-06 8.5E-06 5.2E-06 8.3E-06 6.1E-06 4.0E-06 45.61
    (0, −6) 8.8E-06 4.9E-06 3.0E-06 1.2E-05 1.1E-05 6.6E-06 7.2E-06 5.1E-06 3.2E-06 40.83
    (0, 0) 7.5E-06 4.6E-06 3.0E-06 1.1E-05 1.1E-05 6.3E-06 9.0E-06 7.2E-06 4.4E-06 42.27
    (0, 6) 6.8E-06 5.0E-06 3.5E-06 1.0E-05 1.0E-05 6.6E-06 8.7E-06 6.9E-06 4.1E-06 50.11
    (8, −6) 1.1E-05 5.9E-06 3.9E-06 1.6E-05 1.3E-05 7.9E-06 8.8E-06 6.2E-06 3.8E-06 39.06
    (8, 0) 9.4E-06 5.5E-06 3.8E-06 1.5E-05 1.2E-05 7.7E-06 1.1E-05 7.7E-06 4.6E-06 40.87
    (8, 6) 9.8E-06 5.9E-06 4.1E-06 1.3E-05 1.3E-05 8.4E-06 1.0E-05 7.5E-06 4.5E-06 47.41
    视场均匀性(%) 57.54 79.15 74.94 73.04 79.08 75.18 70.36 76.03 78.12
    下载: 导出CSV
  • [1] 史晓刚, 薛正辉, 李会会, 等. 增强现实显示技术综述[J]. 中国光学,2021,14(5):1146-1161. doi: 10.37188/CO.2021-0032

    SHI X G, XUE ZH H, LI H H, et al. Review of augmented reality display technology[J]. Chinese Optics, 2021, 14(5): 1146-1161. (in Chinese). doi: 10.37188/CO.2021-0032
    [2] DING Y Q, YANG Q, LI Y N Q, et al. Waveguide-based augmented reality displays: perspectives and challenges[J]. eLight, 2023, 3(1): 24. doi: 10.1186/s43593-023-00057-z
    [3] ROLLAND J P, GOODSELL J. Waveguide-based augmented reality displays: a highlight[J]. Light: Science & Applications, 2024, 13(1): 22.
    [4] LU Y Q, LI Y. Planar liquid crystal polarization optics for near-eye displays[J]. Light: Science & Applications, 2021, 10(1): 122.
    [5] SONG W T, LIANG X N, LI SH Q, et al. Retinal projection near‐eye displays with Huygens’ metasurfaces[J]. Advanced Optical Materials, 2023, 11(5): 2202348. doi: 10.1002/adom.202202348
    [6] PARK J H, LEE B. Holographic techniques for augmented reality and virtual reality near-eye displays[J]. Light: Advanced Manufacturing, 2022, 3(1): 137-150.
    [7] CHENG D W, DUAN J X, CHEN H L, et al. Freeform OST-HMD system with large exit pupil diameter and vision correction capability[J]. Photonics Research, 2022, 10(1): 21-32. doi: 10.1364/PRJ.440018
    [8] CHENG D W, WANG Q W, LIU Y, et al. Design and manufacture AR head-mounted displays: a review and outlook[J]. Light: Advanced Manufacturing, 2021, 2(3): 350-369.
    [9] JANG C W, BANG K, CHAE M, et al. Waveguide holography for 3D augmented reality glasses[J]. Nature Communications, 2024, 15(1): 66. doi: 10.1038/s41467-023-44032-1
    [10] DING Y Q, LI Y N Q, YANG Q, et al. Design optimization of polarization volume gratings for full-color waveguide-based augmented reality displays[J]. Journal of the Society for Information Display, 2023, 31(5): 380-386. doi: 10.1002/jsid.1206
    [11] XIONG J H, WU S T. Planar liquid crystal polarization optics for augmented reality and virtual reality: from fundamentals to applications[J]. eLight, 2021, 1: 3. doi: 10.1186/s43593-021-00003-x
    [12] LI ZH, LUO X H, WANG J, et al. Phase space framework enables a variable-scale diffraction model for coherent imaging and display[J]. Photonics Research, 2024, 12(9): 1937. doi: 10.1364/PRJ.523568
    [13] WENG X Y, SONG Q, LI X M, et al. Free-space creation of ultralong anti-diffracting beam with multiple energy oscillations adjusted using optical pen[J]. Nature Communications, 2018, 9(1): 5035. doi: 10.1038/s41467-018-07282-y
    [14] CHENG H H, CHEN Y, CHRISTOPHE A, et al. Optimization and tolerance for an exit pupil expander with 2D grating as out-coupler[C]. Proceedings of SPIE 12449, Optical Architectures for Displays and Sensing in Augmented, Virtual, and Mixed Reality (AR, VR, MR) IV, SPIE, 2023: 124490X.
    [15] YAN SH F, ZHANG E Q, GUO J D, et al. Eyebox uniformity optimization over the full field of view for optical waveguide displays based on linked list processing[J]. Optics Express, 2022, 30(21): 38139-38151. doi: 10.1364/OE.472089
    [16] NI D W, CHENG D W, LIU Y, et al. Uniformity improvement of two-dimensional surface relief grating waveguide display using particle swarm optimization[J]. Optics Express, 2022, 30(14): 24523-24543. doi: 10.1364/OE.462384
    [17] LI Z Y, GAO CH, LI H F, et al. Angular uniformity improvement of diffractive waveguide display based on region geometry optimization[J]. Applied Optics, 2024, 63(10): 2494-2502. doi: 10.1364/AO.515428
    [18] LEVOLA T. Diffractive optics for virtual reality displays[J]. Journal of the Society for Information Display, 2006, 14(5): 467-475. doi: 10.1889/1.2206112
    [19] KONG D Q, ZHAO ZH, SHI X G, et al. Optimization of gratings in a diffractive waveguide using relative-direction-cosine diagrams[J]. Optics Express, 2021, 29(22): 36720-36733. doi: 10.1364/OE.433515
    [20] 李俊昌. 衍射计算及数字全息[M]. 北京: 科学出版社, 2014.

    LI J CH. Diffration Calculation and Digital Holography[M]. Beijing: Science Press, 2014. (in Chinese) (查阅网上资料, 未找到本条文献英文信息, 请确认) .
    [21] GOODMAN J W. Introduction to Fourier Optics[M]. 3rd ed. Englewood: Roberts and Company Publishers, 2005.
    [22] MOHARAM M G, GAYLORD T K, GRANN E B, et al. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings[J]. Journal of the Optical Society of America A, 1995, 12(5): 1068-1076. doi: 10.1364/JOSAA.12.001068
    [23] MOHARAM M G, POMMET D A, GRANN E B, et al. Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach[J]. Journal of the Optical Society of America A, 1995, 12(5): 1077-1086. doi: 10.1364/JOSAA.12.001077
  • 加载中
图(14) / 表(8)
计量
  • 文章访问数:  96
  • HTML全文浏览量:  32
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-02
  • 录用日期:  2025-03-03
  • 网络出版日期:  2025-03-28

目录

    /

    返回文章
    返回