留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于液晶空间光调制器的全息再现像设计

雷俊阁 孙国斌 张锦 蒋世磊 胡驰

雷俊阁, 孙国斌, 张锦, 蒋世磊, 胡驰. 基于液晶空间光调制器的全息再现像设计[J]. 中国光学(中英文). doi: 10.37188/CO.2024-0224
引用本文: 雷俊阁, 孙国斌, 张锦, 蒋世磊, 胡驰. 基于液晶空间光调制器的全息再现像设计[J]. 中国光学(中英文). doi: 10.37188/CO.2024-0224
LEI Jun-ge, SUN Guo-bin, ZHANG Jin, JIANG Shi-lei, HU Chi. Design of holographic reproduction images based on liquid crystal spatial light modulator[J]. Chinese Optics. doi: 10.37188/CO.2024-0224
Citation: LEI Jun-ge, SUN Guo-bin, ZHANG Jin, JIANG Shi-lei, HU Chi. Design of holographic reproduction images based on liquid crystal spatial light modulator[J]. Chinese Optics. doi: 10.37188/CO.2024-0224

基于液晶空间光调制器的全息再现像设计

cstr: 32171.14.CO.2024-0224
基金项目: 陕西省自然科学基础研究计划项目(No. 2024JC-YBMS-269)
详细信息
    作者简介:

    孙国斌(1982—),男,山西长治人,副教授,2005年、2008年于西安工业大学分别获学士、硕士学位。主要从事光学与光电检测技术,全息及衍射微光学等方面的研究。E-mail:83680337@qq.com

  • 中图分类号: O438.1

Design of holographic reproduction images based on liquid crystal spatial light modulator

Funds: Supported by Natural Science Foundation of Shaanxi Science and Technology Department (No. 2024JC-YBMS-269)
More Information
    Corresponding author: 83680337@qq.com
  • 摘要:

    随着全息平视显示系统、虚拟现实增强显示等技术的广泛应用,全息场景对再现图像的质量要求将会更高,再现图像的尺寸将会更加符合人眼视觉特征。本文根据计算全息再现成像原理,采用Gerchberg-Saxton (GS) 算法对输入与输出平面光场分布进行正、逆傅里叶变换迭代求解原始仿真图像在不同特征参数(线宽、圆环直径)和不同计算采样间隔下的相位分布,并仿真计算得到相应的再现图像。利用液晶空间光调制器搭建全息再现实验光路,通过加载不同原始仿真图像的相位分布图进行再现实验,采用相机拍摄得到远场衍射全息再现图像并进行图像处理得到再现图像的实际特征尺寸,实验结果表明再现图像特征尺寸与原始仿真图像特征尺寸基本呈线性变化关系,再现图像尺寸与仿真计算采样间隔呈现非线性变化关系,且与推导的理论计算关系曲线一致。为了进一步验证结论的正确性,设计预期再现图像尺寸为圆环直径0.943 mm,中心十字线宽0.015 mm时,仿真计算得到预期目标原始仿真图像的特征尺寸和采样间隔分别为线宽3 pixel、圆环直径594 pixel、采样间隔25 μm,通过再现实验测量得到的全息再现图像圆环直径为0.93 mm,线宽为0.017 mm,误差精度在0.02 mm以内。研究结果对全息显示、AR/VR显示等应用场景提高虚拟显示图像尺寸真实性提供有益参考。

     

  • 图 1  全息记录与再现示意图

    Figure 1.  Schematic diagram of holographic recording and reproduction

    图 2  离轴全息再现原理图

    Figure 2.  Principle diagram of off-axis holographic reproduction

    图 3  GS算法原理图

    Figure 3.  Schematic diagram of GS algorithm

    图 4  GS算法流程框图

    Figure 4.  Flowchart of GS algorithm

    图 5  原始仿真图像

    Figure 5.  Original simulation image

    图 6  不同线宽的原始图像

    Figure 6.  Original images with different line widths

    图 7  不同线宽下原始图像的相位分布

    Figure 7.  Phase distribution of original images with different line widths

    图 8  不同线宽的仿真再现图像

    Figure 8.  Simulation reproduction images with different line widths

    图 9  不同圆环直径的原始图像

    Figure 9.  Original images with different ring diameters

    图 10  不同圆环直径下原始图像的相位分布

    Figure 10.  Phase distribution of original images with different ring diameters

    图 11  不同圆环直径的仿真再现图像

    Figure 11.  Simulated reproduction images with different ring diameters

    图 12  不同采样间隔下原始图像的相位分布

    Figure 12.  Phase distribution of original images with different sampling intervals

    图 13  不同采样间隔的仿真再现图像

    Figure 13.  Simulated reproduction images with different sampling intervals

    图 14  全息再现系统原理图

    Figure 14.  Schematic diagram of holographic reproduction system

    图 15  基于LC-SLM的全息再现实验系统。1-激光平行光管;2-偏振片;3-LC-SLM;4-带成像镜头的CCD相机;5-电脑1;6-电脑2

    Figure 15.  Holographic reproduction experimental system based on LC-SLM. 1-Laser collimated light tube; 2-Polarizer; 3-LC-SLM; 4-CCD camera with imaging lens; 5-Computer 1; 6-Computer 2

    图 16  透射式相位型LC-SLM液晶显示屏的微结构

    Figure 16.  Microstructure of transmissive phase-type LC-SLM liquid crystal display

    图 17  滤波前和滤波后的再现图像

    Figure 17.  Reproduction images before and after filtering

    图 18  不同线宽的全息再现图像

    Figure 18.  Holographic reproduction images with different line widths

    图 19  再现图像线宽随原始图像线宽的变化曲线

    Figure 19.  Curve of the line widths of the reproduction images with the line widths of the original images

    图 20  不同圆环直径下的全息再现图像

    Figure 20.  Holographic reproduction images with different ring diameters

    图 21  再现图像圆环直径随原始图像圆环直径的变化曲线

    Figure 21.  Curve of the ring diameters of reproduction images with ring diameters of original images

    图 22  不同采样间隔下的全息再现图像

    Figure 22.  Holographic reproduction images with different sampling intervals

    图 23  再现图像尺寸与相机镜头焦距的关系示意图

    Figure 23.  Schematic diagram of relationship between reproduction images and focal length of camera lens

    图 24  再现图像尺寸随采样间隔的变化曲线

    Figure 24.  The curve of the size of reproduction images with sampling intervals

    图 25  仿真设计的预期目标图像、相位分布图及再现图像

    Figure 25.  Expected target images and phase distribution map of the simulation design, and the reproduction image

    表  1  不同原始图像线宽对应的仿真再现图像线宽值

    Table  1.   Line widths of simulated reproduction images corresponding to line widths of different original images

    Line width of the original
    images k0 (pixel)
    Line width of the simulated
    reproduction images (pixel)
    Fitting
    slope
    551
    1010
    1515
    2020
    下载: 导出CSV

    表  2  不同原始图像圆环直径对应的仿真再现图像圆环直径

    Table  2.   Simulated reproduction image ring diameters corresponding to different original image ring diameters

    Ring diameter of the
    original images D0 (pixel)
    Ring diameter in simulated
    reproduction images (pixel)
    Fitting
    slope
    4004001
    500500
    600600
    700700
    下载: 导出CSV

    表  3  不同采样间隔对应的仿真再现图像圆环直径值

    Table  3.   Simulated reproduction image ring diameters corresponding to different sampling intervals

    Ring diameter
    of original
    images
    Sampling
    coefficient
    N
    Sampling
    interval d
    (μm)
    Ring diameter of
    simulated reproduction
    images (pixel)
    Fitting
    slope
    700 1 12.5 700 1
    2 25 350 1/2
    4 50 175 1/4
    8 100 87 1/8
    下载: 导出CSV

    表  4  LC-SLM的工作参数

    Table  4.   Operating parameters of LC-SLM

    Project Parameter
    Effective area size 12.8 mm×9.6 mm
    Number of pixels 1024×768
    Pixel size 12.5 μm×12.5 μm
    Pixel pitch 12.5 μm
    Fill factor 80%
    Gray scale range 0~255
    下载: 导出CSV

    表  5  CCD相机及成像镜头的工作参数

    Table  5.   Operating parameters of CCD cameras and imaging lens

    Project Parameter
    Camera operating parameters Number of pixels 2048×1536
    Pixel size 2.8 μm×2.8 μm
    Lens operating parameters Focal length 50 mm
    Aperture range F/1.8~F/10
    下载: 导出CSV

    表  6  实验测试的不同原始图像线宽对应的再现图像线宽值

    Table  6.   Reproduction images line widthscorresponding to different original images line widths tested experimentally

    Line width of the
    original images
    k0 (pixel)
    Line width of the
    reproduction images
    in pixels (pixel)
    Line width of the
    reproduction images
    k (mm)
    Fitting
    slope
    (mm/pixel)
    5 10 0.0280 0.0030
    10 16 0.0450
    15 22 0.0620
    20 26 0.0730
    下载: 导出CSV

    表  7  实验测试的不同原始图像圆环直径对应的再现图像圆环直径值

    Table  7.   Ring diameters of the reproduction images corresponding to the ring diameters of the different original images tested experimentally

    Ring diameter of
    the original images
    D0 (pixel)
    Pixel occupied by
    ring diameters in
    reproduction
    images (pixel)
    Ring diameter of
    reproduction images
    D (mm)
    Fitting
    slope
    (mm/pixel)
    400 448 1.2544 0.0030
    500 558 1.5624
    600 667 1.8676
    700 766 2.1448
    下载: 导出CSV

    表  8  实验测试的不同采样间隔对应的再现图像圆环直径值

    Table  8.   The ring diameters values of the reproduction images corresponding to the different sampling intervals tested experimentally

    Sampling
    coefficient
    N
    Sampling
    interval d
    (μm)
    Pixel occupied by ring
    diameters of reproduction
    images (pixel)
    Ring diameter of
    reproduction images
    D (mm)
    1 12.5 702 2.1448
    2 25 396 1.1088
    4 50 241 0.6748
    8 100 162 0.4536
    下载: 导出CSV
  • [1] GABOR D. A new microscopic principle[J]. Nature, 1948, 161(4098): 777-778. doi: 10.1038/161777a0
    [2] GOODMAN J W, LAWRENCE R W. Digital image formation from electronically detected holograms[J]. Applied Physics Letters, 1967, 11(3): 77-79. doi: 10.1063/1.1755043
    [3] LOHMANN A W, PARIS D P. Binary fraunhofer holograms, generated by computer[J]. Applied Optic, 1967, 6(10): 1739-1748. doi: 10.1364/AO.6.001739
    [4] GERCHBERG R W, SAXTON W O. A practical algorithm for the determination of phase from image and diffraction plane pictures[J]. Optik, 1972, 35(2): 237-246.
    [5] 王晓诗. 基于迭代的高质量纯相位全息图生成算法[D]. 昆明: 昆明理工大学, 2023.

    WANG X SH. The algorithm based on iteration for generation of phase-only hologram with high quality[D]. Kunming: Kunming University of Science & Technology, 2023. (in Chinese).
    [6] 高乾程. 基于相位优化的计算全息显示研究[D]. 芜湖: 安徽工程大学, 2023.

    GAO Q CH. Research on computer-generated holographic display based on phase optimizatio[D]. Wuhu: Anhui Polytechnic University, 2023. (in Chinese).
    [7] 刘珂瑄, 吴佳琛, 何泽浩, 等. 基于深度学习的计算全息显示进展[J]. 液晶与显示,2023,38(6):819-828. doi: 10.37188/CJLCD.2023-0081

    LIU K X, WU J CH, HE Z H, et al. Progress of learning-based computer-generated holography[J]. Chinese Journal of Liquid Crystals and Displays, 2023, 38(6): 819-828. (in Chinese). doi: 10.37188/CJLCD.2023-0081
    [8] 唐旭. 关于计算全息显示中散斑降噪方法研究[D]. 南昌: 南昌航空大学, 2023.

    TANG X. Research on speckle noise reduction method in computational holographic display[D]. Nanchang: Nanchang Hangkong University, 2023. (in Chinese).
    [9] 邬明仁. 基于扩散模型的计算全息方法研究[D]. 南昌: 南昌大学, 2024.

    WU M R. Research on computer-generated holography method based on diffusion model[D]. Nanchang: Nanchang University, 2024. (in Chinese).
    [10] 高云舒. 基于液晶空间光调制器的可编程波长选择开关的技术研究[D]. 北京: 北京交通大学, 2020.

    GAO Y SH. Research on programmable wavelength selective switch based on liquid crystal spatial light modulator[D]. Beijing: Beijing Jiaotong University, 2020. (in Chinese).
    [11] KOLLIN J S, BENTON S A, JEPSEN M L. Real-time display of 3-D computed holograms by scanning the image of an acousto-optic modulator[J]. Proceedings of SPIE, 1989, 1136: 178-185. doi: 10.1117/12.961683
    [12] SANDO Y, BARADA D, YATAGAI T. Full-color holographic 3D display with horizontal full viewing zone by spatiotemporal-division multiplexing[J]. Applied Optics, 2018, 57(26): 7622-7626. doi: 10.1364/AO.57.007622
    [13] BUSKE P, HOFMANN O, BONNHOFF A, et al. High fidelity laser beam shaping using liquid crystal on silicon spatial light modulators as diffractive neural networks[J]. Optics express, 2024, 32(5): 7064-7078. doi: 10.1364/OE.507630
    [14] MINIKHANOV T Z, ZLOKAZOV E Y, STARIKOV R S, et al. Phase modulation time dynamics of the liquid-crystal spatial light modulator[J]. Measurement Techniques, 2024, 66(12): 935-939. doi: 10.1007/s11018-024-02309-x
    [15] MA B H, YAO B L, LI Z, et al. Generation of three-dimensional optical structures by dynamic holograms displayed on a twisted nematic liquid crystal display[J]. Applied Physics B, 2013, 110(4): 531-537. doi: 10.1007/s00340-012-5289-x
    [16] ZHU W X, GAO F L, FU Q Q, et al. Multi-mode vector light field generation using modified off-axis interferometric holography and liquid crystal spatial light modulators[J]. Photonics, 2023, 11(1): 33. doi: 10.3390/photonics11010033
    [17] 肖瑞. 基于全息光学元件的增强现实三维显示[D]. 北京: 北京邮电大学, 2023.

    XIAO R. Augmented reality 3D display based on holographic optical element[D]. Beijing: Beijing University of Posts and Telecommunications, 2023. (in Chinese).
    [18] XU K, LI X R. Light field modulation algorithms for spatial light modulators: a review[J]. Current Nanoscience, 2024, 21(2): 182-200. doi: 10.2174/0115734137276125231201113602
    [19] 马宁涛. 计算全息再现像质量提升技术的研究[D]. 郑州: 郑州轻工业大学, 2023.

    MA N T. Research on quality improvement technology of computer-generated holographic image[D]. Zhengzhou: Zhengzhou University of Light Industry, 2023. (in Chinese).
    [20] 王化宾, 何渝, 赵立新. 基于改进Gerchberg-Saxton算法的全息双面光刻方法[J]. 激光与光电子学进展,2023,60(16):1609001.

    WANG H B, HE Y, ZHAO L X. Holographic double-sided photolithography based on improved gerchberg-saxton algorithm[J]. Laser & Optoelectronics Progress, 2023, 60(16): 1609001. (in Chinese).
    [21] CHEN Q, TANG M Y, SUN CH L, et al. 83-3: inverse design of liquid crystal phase modulators for 2D/3D switchable display based on deep learning[J]. SID Symposium Digest of Technical Papers, 2024, 55(1): 1159-1162. doi: 10.1002/sdtp.17745
    [22] 武耀霞. 相位型全息分划板的复制技术研究[D]. 西安: 西安工业大学, 2019.

    WU Y X. Research on replication technology of phase holographic reticle[D]. Xi’an: Xi’an Technological University, 2019. (in Chinese).
    [23] 林培秋. 基于纯相位型液晶空间光调制器的相息图三维显示的研究[D]. 金华: 浙江师范大学, 2010.

    LIN P Q. Study on three-dimensional display from kinoform based phase-only liquid crystal spatial light modulator[D]. Jinhua: Zhejiang Normal University, 2010. (in Chinese).
    [24] 颜树华. 衍射微光学设计[M]. 北京: 国防工业出版社, 2011.

    YAN SH H. Design of Diffractive Micro-optics[M]. Beijing: National Defense Industry Press, 2011. (in Chinese).
    [25] 吴嘉元, 韩军, 王谦豪, 等. 利用达曼光栅灰度图去除零级光干扰[J]. 激光与光电子学进展,2024,61(4):185-192.

    WU J Y, HAN J, WANG Q H, et al. Removal of zero-order beam interference using Dammann grating grayscale map[J]. Laser & Optoelectronics Progress, 2024, 61(4): 185-192. (in Chinese).
  • 加载中
图(25) / 表(8)
计量
  • 文章访问数:  48
  • HTML全文浏览量:  22
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-11
  • 录用日期:  2025-03-18
  • 网络出版日期:  2025-03-28

目录

    /

    返回文章
    返回