留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

日球成像仪太阳杂光抑制能力测试方法研究

高天宇 张天一 孟庆宇 咸竞天 罗敬 王维

高天宇, 张天一, 孟庆宇, 咸竞天, 罗敬, 王维. 日球成像仪太阳杂光抑制能力测试方法研究[J]. 中国光学(中英文). doi: 10.37188/CO.2024-0216
引用本文: 高天宇, 张天一, 孟庆宇, 咸竞天, 罗敬, 王维. 日球成像仪太阳杂光抑制能力测试方法研究[J]. 中国光学(中英文). doi: 10.37188/CO.2024-0216
GAO Tian-yu, ZHANG Tian-yi, MENG Qing-yu, XIAN Jing-tian, LUO JING, WANG Wei. Reserch on the test method of solar stray light suppression ability of heliospheric imager[J]. Chinese Optics. doi: 10.37188/CO.2024-0216
Citation: GAO Tian-yu, ZHANG Tian-yi, MENG Qing-yu, XIAN Jing-tian, LUO JING, WANG Wei. Reserch on the test method of solar stray light suppression ability of heliospheric imager[J]. Chinese Optics. doi: 10.37188/CO.2024-0216

日球成像仪太阳杂光抑制能力测试方法研究

cstr: 32171.14.CO.2024-0216
基金项目: 国家重点研发计划(No. 2022YFB3806305);民用航天十四五预研项目(No. D050101);国家重点研发计划(No. 2021YFC2802100);国家自然科学基金(No. 12473085,No. 12003033);中国科学院青年创新促进会(No. 2023225);智元实验室(No. ZYL2024016)
详细信息
    作者简介:

    高天宇(2000—),男,河北沧州人,2022年于合肥工业大学获得学士学位,现为中国科学院长春光机所光学工程专业硕士研究生,主要从事杂散光仿真、测试方面的研究。E-mail:gaotianyu222@mails.ucas.ac.cn

    王 维(1990—),男,黑龙江大庆人,博士,副研究员,2019年于中国科学院大学获得博士学位,主要从事空间光学载荷总体设计、光学系统杂光抑制技术研究。E-mail:wangwei123@ciomp.ac.cn

Reserch on the test method of solar stray light suppression ability of heliospheric imager

Funds: Supported by National Key Research and Development Program of China (No. 2022YFB3806305); This research is supported by the National Key Research and Development Program of China (No. 2021YFC2802100); National Natural Science Foundation of China (No. 12473085, No. 12003033); Youth Innovation Promotion Association of the Chinese Academy of Sciences (No. 2023225); Zhiyuan Laboratory (No. ZYL2024016)
More Information
  • 摘要:

    为了对日球成像仪太阳杂光抑制能力进行定量化的评价,开展了日球成像仪太阳杂光抑制能力的测试方法研究和实验验证。提出了一种通过将前端光阑与相机分段测试进而实现在实验室条件下测试日球成像仪太阳杂光抑制能力的方法,避免了真空测试环境下空间受限带来的结构散射误差进而影响测试精度的问题。利用该方法在实验室条件下对一台日球成像仪太阳杂光抑制能力进行了测试,测试结果表明:日球成像仪整机的PST在WACH1相机处为1.4×10−8,在WACH2处为4.3×10−9。对测试结果进行了误差分析,其中随机误差为21.6%,系统误差导致WACH1处PST测试误差为1.1×10−8,在WACH2处为4.2×10−9,测试精度满足高杂光抑制比的日球成像仪测试要求,证明了该测试方法的可行性和准确性。本文的研究为日球成像仪太阳杂光抑制能力的测试提供了一种新的途径。

     

  • 图 1  本文所测试的日球层成像仪示意图,本文所测试的日球层成像仪示意图,其中蓝色箭头所指角度均为相机视场边缘或视场中心与太阳光线的夹角,WACH1全视场角为20°,WACH2全视场角为40°

    Figure 1.  Schematic diagram of the heliospheric imager tested in this paper. The angles indicated by the blue arrows in the figure are the angles between the edge of the camera's field of view or the center of the field of view and the sun's rays. The WACH1 full field of view is 20°, and the WACH2 full field of view is 40°

    图 2  (a)前端光阑杂光测试系统的组成与工作原理及(b)测试装置实物图

    Figure 2.  (a) Composition and working principle of the front-end diaphragm stray light test system and (b) physical diagram of the test device

    图 3  光电倍增管线性度测量结果

    Figure 3.  Test results of photomultiplier linearity

    图 4  前端光阑杂光抑制能力测试结果

    Figure 4.  Test results of front-end stop stray light suppression

    图 5  测试信号强度随时间的变化关系

    Figure 5.  Variation of test signal strength over time

    图 6  日球相机镜头WACH2杂光抑制能力测试结果

    Figure 6.  Test results of WACH2 stray light suppression capability of heliosphere camera lens

    图 7  主要结构散射传播路径和空气粒子散射路径

    Figure 7.  Scattering propagation paths of the main structure and air particle

    图 8  两表面替换前后的测试结果对比

    Figure 8.  Comparison of test results before and after replacement of two surfaces

    图 9  测试范围1和范围2的示意图,由图可知在同一圆环范围内区域成旋转对称关系,其Mie散射数值应当相等

    Figure 9.  Diagram of test scope 1 and scope 2. It can be seen from the figure that the Mie scattering values should be equal in the regions with rotationally symmetry within the same ring.

    图 10  Mie散射测试结果

    Figure 10.  Test results of Mie scattering

  • [1] DEFISE J M, HALAIN J P, MAZY E, et al. Design of the Heliospheric Imager for the STEREO mission[J]. Proceedings of SPIE, 2001, 4498: 63-72. doi: 10.1117/12.450079
    [2] ZIMBARDO G, YING B, NISTICÒ G, et al. A high-latitude coronal mass ejection observed by a constellation of coronagraphs: solar orbiter/metis, STEREO-A/COR2, and SOHO/LASCO[J]. Astronomy & Astrophysics, 2023, 676: A48.
    [3] BRAGA C R, VOURLIDAS A, LIEWER P C, et al. Coronal mass ejection deformation at 0.1 au observed by WISPR[J]. Astrophysical Journal, 2022, 938: 13. doi: 10.3847/1538-4357/ac90bf
    [4] 徐亮. 大口径光学系统杂散光测试关键技术研究[D]. 西安: 中国科学院大学(中国科学院西安光学精密机械研究所), 2019.

    XU L. Research on key techniques of stray light measurement for large aperture optical systems[D]. Xi’an: University of Chinese Academy of Sciences (Xi’an Institute of Optics & Precision Mechanics, Chinese Academy of Sciences), 2019. (in Chinese).
    [5] 王虎, 陈钦芳, 马占鹏, 等. 杂散光抑制与评估技术发展与展望(特邀)[J]. 光子学报,2022,51(7):0751406. doi: 10.3788/gzxb20225107.0751406

    WANG H, CHEN Q F, MA ZH P, et al. Development and prospect of stray light suppression and evaluation technology (invited)[J]. Acta Photonica Sinica, 2022, 51(7): 0751406. (in Chinese). doi: 10.3788/gzxb20225107.0751406
    [6] GROCHOCKI F, FLEMING J. Stray light testing of the OLI telescope[J]. Proceedings of SPIE, 2010, 7794: 77940W. doi: 10.1117/12.862225
    [7] FAN X W, ZOU G Y, QIU Y L, et al. Optical design of the visible telescope for the SVOM mission[J]. Applied Optics, 2020, 59(10): 3049-3057. doi: 10.1364/AO.386177
    [8] EYLES C J, HARRISON R A, DAVIS C J, et al. The heliospheric imagers onboard the STEREO mission[J]. Solar Physics, 2009, 254(2): 387-445. doi: 10.1007/s11207-008-9299-0
    [9] VOURLIDAS A, HOWARD R A, PLUNKETT S P, et al. The wide-field imager for solar probe plus (WISPR)[J]. Space Science Reviews, 2016, 204(1): 83-130.
    [10] 冷荣宽, 王上, 王智, 等. 空间引力波探测前向杂散光测量和抑制[J]. 中国光学(中英文),2023,16(5):1081-1088. doi: 10.37188/CO.2022-0251

    LENG R K, WANG SH, WANG ZH, et al. Measurement and suppression of forward stray light for spaceborne gravitational wave detection[J]. Chinese Optics, 2023, 16(5): 1081-1088. (in Chinese). doi: 10.37188/CO.2022-0251
    [11] THERNISIEN A F R, HOWARD R A, KORENDYKE C, et al. Stray light analysis and testing of the SoloHI (solar orbiter heliospheric imager) and WISPR (wide field imager for solar probe) heliospheric imagers[J]. Proceedings of SPIE, 2018, 10698: 106980E.
    [12] ZHANG T Y, GAO T Y, WANG D, et al. Calculation of diffraction by a multi-vane baffle based on boundary wave diffraction theory[J]. Proceedings of SPIE, 2024, 13189: 1318911.
    [13] 王维, 陆琳, 张天一, 等. 10−9量级高灵敏度点源透射比测试设备研究[J]. 中国光学,2021,14(2):390-396. doi: 10.37188/CO.2020-0050

    WANG W, LU L, ZHANG T Y, et al. A 10−9-order point source transmission test facility[J]. Chinese Optics, 2021, 14(2): 390-396. (in Chinese). doi: 10.37188/CO.2020-0050
    [14] 曹智睿, 付跃刚, 田浩. 空气洁净度对点源透射比测试准确度的影响[J]. 光子学报,2016,45(1):0112002. doi: 10.3788/gzxb20164501.0112002

    CAO ZH R, FU Y G, TIAN H. The impact for the air cleanliness to the precision of PST test[J]. Acta Photonica Sinica, 2016, 45(1): 0112002. (in Chinese). doi: 10.3788/gzxb20164501.0112002
    [15] 曾瑾, 王战虎, 李欣耀, 等. 基于双柱罐结构的三波段杂散光PST测试装置[J]. 红外,2017,38(4):12-16,22. doi: 10.3969/j.issn.1672-8785.2017.04.003

    ZENG J, WANG ZH H, LI X Y, et al. Three-band stray-light test facility for point source transmission based on double cylindrical chamber[J]. Infrared, 2017, 38(4): 12-16,22. (in Chinese). doi: 10.3969/j.issn.1672-8785.2017.04.003
    [16] 肖鹏益, 刘铭鑫, 闫磊, 等. 鬼像影响下的调制传递函数计算模型[J]. 中国光学(中英文),2024,17(5):1183-1191.

    XIAO P Y, LIU M X, YAN L, et al. An MTF calculation model under the influence of ghost images[J]. Chinese Optics, 2024, 17(5): 1183-1191. (in Chinese).
    [17] KEMP J C, WYATT C L. Terrestrial measurement of the performance of high-rejection optical baffling systems[J]. Optical Engineering, 1977, 16: 412-416.
  • 加载中
图(10)
计量
  • 文章访问数:  38
  • HTML全文浏览量:  22
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-26
  • 录用日期:  2025-02-18
  • 网络出版日期:  2025-03-28

目录

    /

    返回文章
    返回