留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

涡旋光束轨道角动量的十字线检测法

王彤 熊晗 王华鑫 来右丽

王彤, 熊晗, 王华鑫, 来右丽. 涡旋光束轨道角动量的十字线检测法[J]. 中国光学(中英文). doi: 10.37188/CO.2024-0209
引用本文: 王彤, 熊晗, 王华鑫, 来右丽. 涡旋光束轨道角动量的十字线检测法[J]. 中国光学(中英文). doi: 10.37188/CO.2024-0209
WANG Tong, XIONG Han, WANG Hua-xin, LAI You-li. Crosshair detection method for orbital angular momentum of vortex beams[J]. Chinese Optics. doi: 10.37188/CO.2024-0209
Citation: WANG Tong, XIONG Han, WANG Hua-xin, LAI You-li. Crosshair detection method for orbital angular momentum of vortex beams[J]. Chinese Optics. doi: 10.37188/CO.2024-0209

涡旋光束轨道角动量的十字线检测法

cstr: 32171.14.CO.2024-0209
基金项目: 十四五”江苏省重点学科资助(No. 2021135);
详细信息
    作者简介:

    王 彤(1998—),女,陕西西安人,硕士研究生,主要从事涡旋光、激光等方面的研究。E-mail:1369782036@qq.com

    熊 晗(1980—),男,江西高安人,博士,副教授,硕士生导师,2014年毕业于苏州大学现代光学技术研究所,获工学博士学位,现工作于苏州科技大学物理科学与技术学院。主要从事涡旋光传输及检测和高功率激光方面的研究。E-mail:xh1980xh@126.com

  • 中图分类号: O436

Crosshair detection method for orbital angular momentum of vortex beams

Funds: Supported by This work was supported by Jiangsu Key Disciplines of the Fourteenth Five-Year Plan (No. 2021135)
More Information
  • 摘要:

    本文提出一种利用十字线衍射进行涡旋光束OAM检测的方法,其远场分布中与OAM相关的主亮斑包含了入射光束的大部分能量(50%~84%),且不存在干扰检测的次亮斑。相比之下,传统小孔衍射法中的主亮斑能量比例极低,尤其是7阶拓扑荷以上的远场主亮斑中只包含不到1%的入射光束能量,且拓扑荷级数越高,次亮斑的干扰性越强。因此,十字线测量法对弱涡旋光束的检测尤为适用,这对于远程的自由空间光通讯发展具有潜在的重要影响。

     

  • 图 1  高斯涡旋光束经不同线结构衍射的远场分布(a)横线;(b)竖线;(c)十字线;(d)~(f)为(a)~(c)线结构对应的远场衍射结果;(g)~(i)为(d)~(f)远场衍射结果的相位分布

    Figure 1.  Far-field distribution of Gaussian vortex beams diffracted by different line structures. (a) horizontal line; (b) vertical line; (c) crosshair; (d)-(f) are the far-field diffraction results corresponding to (a)-(c) line structures; (g)-(i) is the phase distribution of the far-field diffraction results from (d)-(f)

    图 2  十字线检测法的远场衍射结果

    Figure 2.  Far-field diffraction results of the crosshair detection method

    图 3  三条线和米字线结构的远场衍射结果

    Figure 3.  Far-field diffraction results of three lines and star patterned line structures

    图 4  十字线中心位置偏移时的远场衍射结果

    Figure 4.  Far-field diffraction results when there is an offset in the center position of the crosshair

    图 5  改变十字线偏移方向的远场衍射结果

    Figure 5.  Far-field diffraction results for changing the direction of the crosshair offset

    图 6  10阶拓扑荷涡旋光束经不同光阑后的远场衍射分布

    Figure 6.  Far-field diffraction distribution of a 10th-order topological charge vortex beam through different apertures

    图 7  十字线检测法的实验光路示意图

    Figure 7.  Experimental light path diagram of the crosshair detection method

    图 8  实验器件及产生的涡旋光

    Figure 8.  Experimental devices and generated vortex beam

    图 9  十字线检测法的实验结果

    Figure 9.  Experimental results of the crosshair detection method

    图 10  阈值处理后的实验结果

    Figure 10.  Experimental results after thresholding

    图 11  十字线偏移情况的实验结果

    Figure 11.  Experimental results of the crosshair center position offset

    表  1  高斯涡旋光束经不同光阑衍射后的远场主亮斑能量

    Table  1.   Far-field primary spot energy of Gaussian vortex beams through different apertures

    Topological
    charge
    Cross lineRectangular
    aperture
    Triangular
    aperture
    150.65%89.84%78.05%
    263.67%50.27%44.63%
    368.63%21.58%23.12%
    474.07%9.32%10.84%
    577.11%3.81%5.34%
    679.37%1.46%2.67%
    781.13%0.48%1.25%
    882.60%0.16%0.57%
    983.77%0.05%0.24%
    1084.49%0.01%0.10%
    下载: 导出CSV
  • [1] ALLEN L, BEIJERSBERGEN M W, SPREEUW R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185-8189. doi: 10.1103/PhysRevA.45.8185
    [2] 娄岩, 陈纯毅, 赵义武, 等. 高斯涡旋光束在大气湍流传输中的特性研究[J]. 中国光学,2017,10(6):768-776. doi: 10.3788/co.20171006.0768

    LOU Y, CHEN CH Y, ZHAO Y W, et al. Characteristics of Gaussian vortex beam in atmospheric turbulence transmission[J]. Chinese Optics, 2017, 10(6): 768-776. (in Chinese). doi: 10.3788/co.20171006.0768
    [3] LIU J, CHEN SH, WANG H Y, et al. Amplifying orbital angular momentum modes in ring-core erbium-doped fiber[J]. Research, 2020, 2020: 7623751.
    [4] LIU J Y, ZHANG J X, LIU J, et al. 1-Pbps orbital angular momentum fibre-optic transmission[J]. Light: Science & Applications, 2022, 11(1): 202.
    [5] LIU Z Q, ZHANG H K, LIU K G, et al. Data transmission under high scattering based on OAM-basis transmission matrix[J]. Optics Letters, 2022, 47(17): 4580-4583. doi: 10.1364/OL.469688
    [6] KONG A R, LEI T, WANG D W, et al. Extending orbital angular momentum multiplexing to radially high orders for massive mode channels in fiber transmission[J]. Optics Letters, 2023, 48(14): 3717-3720. doi: 10.1364/OL.495704
    [7] LAMPERSKA W, MASAJADA J, DROBCZYŃSKI S, et al. Optical vortex torque measured with optically trapped microbarbells[J]. Applied Optics, 2020, 59(15): 4703-4707. doi: 10.1364/AO.385167
    [8] STUHLMÜLLER N C X, FISCHER T M, DE LAS HERAS D. Colloidal transport in twisted lattices of optical tweezers[J]. Physical Review E, 2022, 106(3-1): 034601.
    [9] ZENG K, PU J J, XU X M, et al. Gradient torque and its effect on rotational dynamics of optically trapped non-spherical particles in the elliptic Gaussian beam[J]. Optics Express, 2023, 31(10): 16582-16592. doi: 10.1364/OE.488217
    [10] WANG J Y, LI F F, KANG G G. Multiwavelength achromatic super-resolution focusing via a metasurface-empowered controlled generation of focused cylindrically polarized vortex beams[J]. Optics Express, 2022, 30(17): 30811-30821. doi: 10.1364/OE.462900
    [11] 赵冬娥, 李诺伦, 马亚云, 等. 基于剪切干涉的双涡旋光干涉图样特性研究[J]. 激光与光电子学进展,2021,58(11):1108001.

    ZHAO D E, LI N L, MA Y Y, et al. Characteristics of double-vortex optical interferogram based on shearing interference[J]. Laser & Optoelectronics Progress, 2021, 58(11): 1108001. (in Chinese).
    [12] 刘泽隆, 李茂月, 卢新元, 等. 高动态范围条纹结构光在机检测技术及应用进展[J]. 中国光学(中英文),2024,17(1):1-18. doi: 10.37188/CO.2023-0068

    LIU Z L, LI M Y, LU X Y, et al. On-machine detection technology and application progress of high dynamic range fringe structured light[J]. Chinese Optics, 2024, 17(1): 1-18. (in Chinese). doi: 10.37188/CO.2023-0068
    [13] MA J B, LI P, ZHOU Z H, et al. Characteristics of fork-shaped fringes formed by off-axis interference of two vortex beams[J]. Journal of the Optical Society of America A, 2021, 38(1): 115-123. doi: 10.1364/JOSAA.412404
    [14] COX M A, CELIK T, GENGA Y, et al. Interferometric orbital angular momentum mode detection in turbulence with deep learning[J]. Applied Optics, 2022, 61(7): D1-D6. doi: 10.1364/AO.444954
    [15] QIN H, FU Q, TAN W, et al. Highly accurate OAM mode detection network for ring Airy Gaussian vortex beams disturbed by atmospheric turbulence based on interferometry[J]. Journal of the Optical Society of America A, 2023, 40(7): 1319-1326. doi: 10.1364/JOSAA.491846
    [16] SILVA J G, JESUS-SILVA A J, ALENCAR M A R C, et al. Unveiling Square and triangular optical lattices: a comparative study[J]. Optics Letters, 2014, 39(4): 949-952. doi: 10.1364/OL.39.000949
    [17] LAN B, LIU CH, RUI D M, et al. The topological charge measurement of the vortex beam based on dislocation self-reference interferometry[J]. Physica Scripta, 2019, 94(5): 055502. doi: 10.1088/1402-4896/ab03a2
    [18] CHEN T CH, LU X Y, ZENG J, et al. Young's double-slit experiment with a partially coherent vortex beam[J]. Optics Express, 2020, 28(25): 38106-38114. doi: 10.1364/OE.410812
    [19] MELO L A, JESUS-SILVA A J, CHÁVEZ-CERDA S, et al. Direct measurement of the topological charge in elliptical beams using diffraction by a triangular aperture[J]. Scientific Reports, 2018, 8(1): 6370. doi: 10.1038/s41598-018-24928-5
    [20] 庄京秋, 熊晗, 虞天成, 等. 基于软边小孔的涡旋光轨道角动量检测研究[J]. 光学 精密工程,2022,30(12):1394-1405. doi: 10.37188/OPE.20223012.1394

    ZHUANG J Q, XIONG H, YU T CH, et al. Orbital angular momentum detection of vortex beam based on soft-edge aperture[J]. Optics and Precision Engineering, 2022, 30(12): 1394-1405. (in Chinese). doi: 10.37188/OPE.20223012.1394
    [21] WANG J Q, FU SH Y, SHANG Z J, et al. Adjusted EfficientNet for the diagnostic of orbital angular momentum spectrum[J]. Optics Letters, 2022, 47(6): 1419-1422. doi: 10.1364/OL.443726
    [22] LI X J, SUN L M, HUANG J M, et al. Research on orbital angular momentum recognition technology based on a convolutional neural network[J]. Sensors, 2023, 23(2): 971. doi: 10.3390/s23020971
    [23] 谌娟, 柯熙政, 杨一明. 拉盖尔高斯光的衍射和轨道角动量的弥散[J]. 光学学报,2014,34(4):0427001. doi: 10.3788/AOS201434.0427001

    CHEN J, KE X ZH, YANG Y M. Laguerre-Gaussian beam diffraction and dispersion of the orbital angular momentum[J]. Acta Optica Sinica, 2014, 34(4): 0427001. (in Chinese). doi: 10.3788/AOS201434.0427001
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  84
  • HTML全文浏览量:  18
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-19
  • 录用日期:  2025-02-18
  • 网络出版日期:  2025-02-26

目录

    /

    返回文章
    返回