留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Varifocal变焦结构视光学系统设计

胡神保 张静 张功 张峻铭 张彦

胡神保, 张静, 张功, 张峻铭, 张彦. 基于Varifocal变焦结构视光学系统设计[J]. 中国光学(中英文). doi: 10.37188/CO.2024-0176
引用本文: 胡神保, 张静, 张功, 张峻铭, 张彦. 基于Varifocal变焦结构视光学系统设计[J]. 中国光学(中英文). doi: 10.37188/CO.2024-0176
HU Shen-bao, ZHANG Jing, ZHANG Gong, ZHANG Jun-ming, ZHANG Yan. Design of visual optical system based on Varifocal zoom structure[J]. Chinese Optics. doi: 10.37188/CO.2024-0176
Citation: HU Shen-bao, ZHANG Jing, ZHANG Gong, ZHANG Jun-ming, ZHANG Yan. Design of visual optical system based on Varifocal zoom structure[J]. Chinese Optics. doi: 10.37188/CO.2024-0176

基于Varifocal变焦结构视光学系统设计

cstr: 32171.14.CO.2024-0176
基金项目: 吉林省创新能力建设资金(No. 2022C045-4);高等学校学科创新引智计划(111计划,No. DL2023009002L)
详细信息
    作者简介:

    胡神保(1998—),安徽安庆人,研究生,主要从事光学设计及先进制造方面的研究。E-mail:hushenbao1432982124@qq.com

  • 中图分类号: TP394.1;TH691.9

Design of visual optical system based on Varifocal zoom structure

Funds: Supported by Jilin Province Innovation Capacity Building Fund (No. 2022C045-4); Higher Education Discipline Innovation and Introduction of Talents Program (No. 111 Plan, No. DL2023009002L)
More Information
    Corresponding author: xxxxxx.xxx
  • 摘要:

    当前市面上的视觉训练产品大多采用电子屏幕显示远近大小交替变化的物体,通过观看屏幕刺激睫状肌,进行视功能训练,但该方法存在蓝光辐射,对人眼构成潜在危害。针对此问题,设计了一种基于Varifocal变焦结构的视光学系统,该系统通过控制两组垂直于光轴镜片的横向移动实现光焦度连续变倍,模拟物体远近的变化,刺激睫状肌调节训练。本文首先推导可变焦距透镜的面型限制,加入可变焦距球面效应方程优化Alvarez透镜基础面型,并采用Zemax软件进行设计。所设计的透镜面型由三阶XY多项式自由曲面表征,其中两组透镜最大相对垂轴偏移量为5.6 mm,实现屈光度在+4D—−8D的连续变倍。设计结果表明,全视场调制传递函数在奈奎斯特频率30 lp/mm处均大于0.3,均方根(RMS)半径值接近于艾里斑半径值,畸变均小于2%,该光学系统成像质量较好。

     

  • 图 1  Alvarez透镜[11}

    Figure 1.  Alvarez lens[11]

    图 2  Alvarez透镜变焦原理 (a)平行玻璃板 (b)凸透镜 (c)凹透镜

    Figure 2.  Alvarez lens zoom principle (a) parallel glass plate (b) convex lens (c) concave lens

    图 3  连续变焦光学系统3D视图

    Figure 3.  3D view of continuous zoom optical system

    图 4  不同光焦度下位移量

    Figure 4.  Displacement at different optical powers

    图 5  自由曲面透镜面型

    Figure 5.  Surface shape of free-form surface lens

    图 6  连续变焦光学系统传函曲线

    Figure 6.  MTF curve of continuous zoom optical system

    图 7  连续变焦光学系统点列图

    Figure 7.  Spot diagram of continuous zoom optical system

    图 8  连续变焦系统RMS vs 视场图

    Figure 8.  Continuous zoom system RMS vs. FOV

    图 9  连续变焦系统畸变图

    Figure 9.  Distortion diagram of continuous zoom optical system

    图 10  蒙特卡洛分析图

    Figure 10.  Monte Carlo analysis chart

    表  1  连续变焦光学系统参数指标

    Table  1.   Parameters and indicators of continuous zoom optical system

    Parameter Value
    Wavelength/nm 486-656
    Full field of view /(°) 15°
    Entrance pupil diameter/mm 4
    Focal power variation/D +4D—−8D
    Distortion/% <2%
    MTF 30line pairs >0.3
    下载: 导出CSV

    表  2  连续变焦光学系统基本参数

    Table  2.   Basic parameters of continuous zoom optical system

    Type A Radius Thickness Material
    Standrad - 无限 3 APL5014CL
    XY polynomial 0.0006 −3.940E-09 1
    XY polynomial 0.0006 −3.940E-09 3 APL5014CL
    Standrad - 无限 12
    Standrad
    (角膜)
    - 6.896 0.6 Nd:1.377
    Vd:55
    Standrad
    (液状体)
    - 3.365 3 Nd:1.335
    Vd:55
    Standrad(stop)
    (瞳孔)
    - 10.100 0
    Standrad
    (晶状体)
    - 10.485 4 Nd:1.405
    Vd:55
    Even Aspheric
    (玻璃体)
    - −5.673 17.25 Nd:1.335
    Vd:55
    Standrad
    (视网膜)
    −12.5 0
    下载: 导出CSV

    表  3  XY多项式自由曲面系数

    Table  3.   polynomial free-form surface coefficients

    CoefficientValue
    X32.11×10−4
    XY26.31×10−4
    X22.01×10−5
    Y21.38×10−6
    X3.48×10−5
    下载: 导出CSV

    表  4  系统公差设置

    Table  4.   System tolerance settings

    TypeOperatorItemTarget
    Index tolerancesTINDIndex0.0005
    TABBAbbe0.3
    Surface tolerancesTIRRIrregularity0.5
    TFRNRadius/fringe3
    TTHIThickness/mm0.002
    TSDX(Y)Decenter/mm0.02
    TSTX(Y)Tilt/°0.0167
    Element tolerancesTEDX(Y)Decenter/mm0.015
    TETX(Y)Tilt/°0.0167
    下载: 导出CSV
  • [1] 王婉珠, 李爱华, 倪连红. VTS4疗法联合传统综合疗法治疗屈光不正性弱视的效果[J]. 中国医学创新,2023,20(15):107-110.

    WANG W ZH, LI A H, NI L H. Effect of VTS4 therapy combined with traditional comprehensive therapy in the treatment of ametropia amblyopia[J]. Medical Innovation of China, 2023, 20(15): 107-110. (in Chinese).
    [2] 迟英杰, 王华君, 李霄, 等. 视觉训练系统联合传统综合疗法对屈光不正性弱视治疗的临床效果评价[J]. 中华实验眼科杂志,2022,40(6):451-457.

    CHI Y J, WANG H J, LI X, et al. Clinical evaluation of vision therapy system 4 combined with traditional comprehensive training for ametropic amblyopia[J]. Chinese Journal of Experimental Ophthalmology, 2022, 40(6): 451-457. (in Chinese).
    [3] 黄艳, 李雪瑶, 刘庆. 视觉功能训练系统在屈光性弱视患儿治疗中的应用效果[J]. 中国卫生标准管理,2023,14(13):1-5.

    HUANG Y, LI X Y, LIU Q. Effectiveness of visual function training system in the treatment of children with refractive amblyopia[J]. China Health Standard Management, 2023, 14(13): 1-5. (in Chinese).
    [4] 杨翠. 基于IPMC驱动的可变焦微透镜的研究[D]. 太原: 太原理工大学, 2021.

    YANG C. Research on variable focal microlens driven by IPMC[D]. Taiyuan: Taiyuan University of Technology, 2021. (in Chinese).
    [5] HAO Q, CHEN CH X, CAO J, et al. Ultra-wide varifocal imaging with selectable region of interest capacity using Alvarez lenses actuated by a dielectric elastomer[J]. Photonics Research, 2022, 10(7): 1543-1551. doi: 10.1364/PRJ.455331
    [6] 卞旭琪. 自由曲面变焦成像系统的研究[D]. 苏州: 苏州大学, 2017.

    DIAN X Q. Research on freeform varifocal optical imaging systems[D]. Suzhou: Soochow University, 2017. (in Chinese).
    [7] ALVAREZ L W. Two-element variable-power spherical lens: US, 3305294[P]. 1967-02-21.
    [8] BARBERO S, RUBINSTEIN J. Adjustable-focus lenses based on the Alvarez principle[J]. Journal of Optics, 2011, 13(12): 125705. doi: 10.1088/2040-8978/13/12/125705
    [9] HOU CH L, XIN Q, ZANG Y. Optical zoom system realized by lateral shift of Alvarez freeform lenses[J]. Optical Engineering, 2018, 57(4): 045103.
    [10] 蒋婷婷, 冯华君, 李奇. 自由曲面变焦的内调焦式光学系统设计[J]. 红外与激光工程,2021,50(4):20200290. doi: 10.3788/IRLA20200290

    JIANG T T, FENG H J, LI Q. Design on internal focusing optical system with zoom lens of freeform[J]. Infrared and Laser Engineering, 2021, 50(4): 20200290. (in Chinese). doi: 10.3788/IRLA20200290
    [11] 蒋婷婷, 徐之海, 李奇. 基于五阶自由曲面垂轴偏移的空间相机变焦方法[J]. 飞控与探测,2023,6(2):18-22.

    JIANG T T, XU ZH H, LI Q. Zooming method for space cameras based on lateral shift of fifth-order free-form lenses[J]. Flight Control & Detection, 2023, 6(2): 18-22. (in Chinese).
    [12] 欧阳琦, 柳萌遥, 宁妍, 等. 基于Alvarez透镜的紧凑型红外连续变倍系统设计[J]. 激光与光电子学进展,2024,61(10):1022001.

    OUYANG Q, LIU M Y, NING Y, et al. Design of a compact infrared continuous optical zoom system based on Alvarez lenses[J]. Laser & Optoelectronics Progress, 2024, 61(10): 1022001. (in Chinese).
    [13] CAMPBELL C E. Conditions under which two-element variable power lenses can be created. Part 1. Theoretical analysis[J]. Journal of the Optical Society of America A, 2011, 28(10): 2148-2152. doi: 10.1364/JOSAA.28.002148
    [14] CAMPBELL C E. Conditions under which two-element variable power lenses can be created. Part 2. Application to specific designs[J]. Journal of the Optical Society of America A, 2011, 28(10): 2153-2159. doi: 10.1364/JOSAA.28.002153
    [15] 罗宇杰. 紧凑型无盲区全景成像光学系统及其变焦组件设计研究[D]. 杭州: 浙江大学, 2018.

    LUO Y J. Design of compact non-blind area PAL system and its zoom elements[D]. Hangzhou: Zhejiang University, 2018. (in Chinese).
    [16] 禹静. 自由曲面镜片评价方法的研究[D]. 天津: 天津大学, 2015.

    YU J. Study on evaluation method of freeform spectacle lenses[D]. Tianjin: Tianjin University, 2015. (in Chinese).
    [17] 华芳芳, 禹静, 李东升. 渐进多焦点镜片光学系统MTF评价的仿真分析[J]. 光学技术,2018,44(6):709-716.

    HUA F F, YU J, LI D SH. Research on MTF evaluation method of progressive addition lenses[J]. Optical Technique, 2018, 44(6): 709-716. (in Chinese).
    [18] 张梅. 基于个性化眼光学结构的人眼色差的研究[D]. 天津: 南开大学, 2010.

    ZHANG M. Research on chromatic aberration of human eye based on individual eye[D]. Tianjin: Nankai University, 2010. (in Chinese).
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  57
  • HTML全文浏览量:  31
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-29
  • 录用日期:  2025-02-25
  • 网络出版日期:  2025-03-28

目录

    /

    返回文章
    返回