留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大口径环形分段光学系统基准构建方法

安其昌 吴小霞 刘欣悦 王勋 李洪文

安其昌, 吴小霞, 刘欣悦, 王勋, 李洪文. 大口径环形分段光学系统基准构建方法[J]. 中国光学(中英文), 2024, 17(2): 390-397. doi: 10.37188/CO.2023-0149
引用本文: 安其昌, 吴小霞, 刘欣悦, 王勋, 李洪文. 大口径环形分段光学系统基准构建方法[J]. 中国光学(中英文), 2024, 17(2): 390-397. doi: 10.37188/CO.2023-0149
AN Qi-chang, WU Xiao-xia, LIU Xin-yue, WANG Xun, LI Hong-wen. A benchmark construction method for large aperture circular segmented optical systems[J]. Chinese Optics, 2024, 17(2): 390-397. doi: 10.37188/CO.2023-0149
Citation: AN Qi-chang, WU Xiao-xia, LIU Xin-yue, WANG Xun, LI Hong-wen. A benchmark construction method for large aperture circular segmented optical systems[J]. Chinese Optics, 2024, 17(2): 390-397. doi: 10.37188/CO.2023-0149

大口径环形分段光学系统基准构建方法

doi: 10.37188/CO.2023-0149
基金项目: 吉林省科技发展计划 (No. 20220402032GH)
详细信息
    作者简介:

    安其昌(1988—),男,山西太原人,博士,副研究员。2011年于中国科学技术大学获得工学学士学位,2018年于中国科学院大学获得博士学位,主要研究方向为大口径光机系统检测装调。E-mail:anji@mail.ustc.edu.cn

  • 中图分类号: TH751

A benchmark construction method for large aperture circular segmented optical systems

Funds: Supported by Jilin Science and Technology Development Program (No. 20220402032GH)
More Information
  • 摘要:

    为了更好地对大口径分段望远镜进行集成检测与稳定性保持基准构建,本文提出一种大口径环形分段光学系统基准构建方法。首先,采用局部光瞳投射的方式实现光瞳对准映射;其次,利用微透镜阵列构建系统共焦空间基准;之后,基于环带整体调控模式,采用共焦与曲率半径联合分析,实现曲率半径与系统对准的共同调节;最后,利用白光干涉所形成的条纹包络进行粗共相探测,并利用通道光谱方法实现粗共相与精共相间的精度衔接,空间共焦基准定位精度优于125 μm,共相基准覆盖范围优于20 μm,精度优于0.5 μm,光谱基准不确定度优于5%。实现了不同时空特征扰动的分层次、多模态抑制,利用以上共基准原位测量新方法有效提升了光学系统原位计量检测精度并缩短了溯源链长度,增加了检测效率与准确度。

     

  • 图 1  大口径分段镜光瞳对准基准。(a) 实验平台;(b)采样区域分布图;(c)~(e) 倾斜所带来的光瞳强度变化与边界偏移

    Figure 1.  Pupil alignment benchmark of large aperture segmented Mirror. (a) Experimental platform; (b) sampling area distribution; (c)~(e) changes in pupil intensity and boundary offset caused by tilting

    图 4  共相测试验证实验。(a) 测量原理;(b)~(d) 宽带干涉条纹;(e)~(f) 窄带干涉条纹

    Figure 4.  Co-phase testing verification. (a) Experimental principle; (b)~(d) broadband interference fringes; (e)~(f) narrow band interference fringes

    图 5  光纤互联大范围间距测试验证实验。(a) 实验原理示意图;(b)~(e)不同入射波长下的光纤模态

    Figure 5.  Verification experiment of large-scale spacing testing for fiber interconnections. (a) Experimental principle; (b)~(e) fiber modes at different incident wavelengths

    图 6  光子灯笼光谱测试验证实验。(a)~(c)1530 nm下,少模端模场分布与两方向截面;(d)~(f)1550 nm下,少模端模场分布与两方向截面;(g)~(i) 1570 nm下,少模端模场分布与两方向截面

    Figure 6.  Photon lantern spectrum testing verification. (a)~(c) At 1530 nm, the distribution of few-mode end mode field and cross sections; (d)~(f) at 1550 nm, the distribution of few-mode end mode field and cross sections; (g)~(i) at 1570 nm, the distribution of few-mode end mode field and cross sections

    图 3  曲率半径定标验证。(a)环带检测原理图;(b)实验平台;(c)光强差分;(d)像差估计

    Figure 3.  Verification of curvature radius measurement standard. (a) Ring detection principle diagram; (b) experimental platform; (c) light intensity difference; (d) aberration estimation

    图 2  基于微透镜阵列的共焦检测结果。(a)系统原理图;(b)实验现场;(c)原始焦面光强分布;(d)~(f)不同共焦状态焦面光强分布;(g)~(i)光强差分

    Figure 2.  Co-focus detection results based on micro-lens array. (a) System schematic diagram; (b) experimental site; (c) intensity distribution of original focal plane; (d)~(f) intensity distribution of focal plane at different co-focus states; (g)~(i) intensity difference

    图 7  仿真分析测试验证结果。(a)焦前光强分布;(b)焦后光强分布;(c)光强差分;(c)重建波前;(d)原始波前

    Figure 7.  Simulation analysis test verification results. (a) Intra-focal light intensity distribution; (b) extra-focal light intensity distribution; (c) light intensity difference; (c) reconstruction wavefront; (d) original wavefront

    图 8  外场实验验证结果。(a)焦前光强分布;(b)焦后光强分布; (c) 波前解算结果;(d)离焦星点图分析

    Figure 8.  Verification results of field experiments. (a) Intra-focal light intensity distribution; (b) extra-focal light intensity distribution; (c) wavefront solution results; (d) analysis of defocused star point maps

  • [1] GOULLIOUD R, MCELWAIN M, BURDICK G M, et al. OpTIIX: An ISS-based testbed paving the roadmap toward a next generation, large aperture UV/optical space telescope[R]. 2012.
    [2] BASU S. Conceptual design of an autonomously assembled space telescope (AAST)[J]. Proceedings of SPIE, 2004, 5166: 98-112. doi: 10.1117/12.516464
    [3] BOLCAR M R. The large UV/optical/infrared surveyor (LUVOIR): Decadal mission concept technology development overview[J]. Proceedings of SPIE, 2017, 10398: 103980A.
    [4] SIVARAMAKRISHNAN A, TUTHILL P, LLOYD J P, et al. The near infrared imager and Slitless spectrograph for the James Webb space telescope. IV. Aperture masking interferometry[J]. Publications of the Astronomical Society of the Pacific, 2023, 135(1043): 015003. doi: 10.1088/1538-3873/acaebd
    [5] CANUTO E, MUSSO F. Active angular stabilization of the GAIA space telescope through laser interferometry[J]. IFAC Proceedings Volumes, 2004, 37(6): 955-960. doi: 10.1016/S1474-6670(17)32302-9
    [6] KIM D W, ESPARZA M, QUACH H, et al. Optical technology for future telescopes[J]. Proceedings of SPIE, 2021, 11761: 1176103.
    [7] 李斌, 杨阿坤, 邹吉平. 基于宽波段光源拼接镜新型共相检测技术研究[J]. 中国光学(中英文),2022,15(4):797-805. doi: 10.37188/CO.2021-0234

    LI B, YANG A K, ZOU J P. A new co-phasing detection technology of a segmented mirror based on broadband light[J]. Chinese Optics, 2022, 15(4): 797-805. (in Chinese). doi: 10.37188/CO.2021-0234
    [8] BIASI R, MANETTI M, ANDRIGHETTONI M, et al. E-ELT M4 adaptive unit final design and construction: a progress report[J]. Proceedings of SPIE, 2016, 9909: 99097Y. doi: 10.1117/12.2234735
    [9] AN Q CH, WU X X, LIN X D, et al. Alignment of DECam-like large survey telescope for real-time active optics and error analysis[J]. Optics Communications, 2021, 484: 126685. doi: 10.1016/j.optcom.2020.126685
    [10] AN Q CH, ZHANG H F, WU X X, et al. Curvature sensing-based pupil alignment method for large-aperture telescopes[J]. IEEE Photonics Journal, 2023, 15(1): 6800705.
    [11] DAI Y CH, YANG D H, JIN ZH Y, et al. Active control of the Chinese giant solar telescope[J]. Proceedings of SPIE, 2014, 9145: 914550.
    [12] WU Z L, KANG I, YAO Y D, et al. Three-dimensional nanoscale reduced-angle ptycho-tomographic imaging with deep learning (RAPID)[J]. eLight, 2023, 3: 7. doi: 10.1186/s43593-022-00037-9
    [13] SIROHI R. Shearography and its applications—A chronological review[J]. Light:Advanced Manufacturing, 2022, 3: 1.
  • 加载中
图(8)
计量
  • 文章访问数:  152
  • HTML全文浏览量:  51
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-28
  • 修回日期:  2023-09-12
  • 网络出版日期:  2023-12-05

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!