留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应用于高能激光器的XY离焦像差校正方法

冯亚飞 韦承甫 任晓明 郭建增 王杰

冯亚飞, 韦承甫, 任晓明, 郭建增, 王杰. 应用于高能激光器的XY离焦像差校正方法[J]. 中国光学(中英文), 2024, 17(2): 366-373. doi: 10.37188/CO.2023-0142
引用本文: 冯亚飞, 韦承甫, 任晓明, 郭建增, 王杰. 应用于高能激光器的XY离焦像差校正方法[J]. 中国光学(中英文), 2024, 17(2): 366-373. doi: 10.37188/CO.2023-0142
FENG Ya-fei, WEI Cheng-fu, REN Xiao-ming, GUO Jian-zeng, WANG Jie. An XY defocus aberration correction method for high-energy lasers[J]. Chinese Optics, 2024, 17(2): 366-373. doi: 10.37188/CO.2023-0142
Citation: FENG Ya-fei, WEI Cheng-fu, REN Xiao-ming, GUO Jian-zeng, WANG Jie. An XY defocus aberration correction method for high-energy lasers[J]. Chinese Optics, 2024, 17(2): 366-373. doi: 10.37188/CO.2023-0142

应用于高能激光器的XY离焦像差校正方法

基金项目: 国家高技术发展计划(No. 51326010201)
详细信息
    作者简介:

    冯亚飞(1989—),男,河北邯郸人,博士,高级工程师,2017年于浙江大学光电学院获得博士学位,主要从事激光技术方面的研究。E-mail:fengyafei@zju.edu.cn

    任晓明(1971—),男,河北邯郸人,研究员,主要从事激光技术方面的研究。E-mail:ren.xiaoming@163.com

  • 中图分类号: TN248

An XY defocus aberration correction method for high-energy lasers

Funds: Supported by National High-tech R&D Program (No. 51326010201)
More Information
  • 摘要:

    针对高能激光器出光过程中出现的大量离焦和0°像散低阶像差现象,提出了基于哈特曼波前传感器和二维整形光路的XY离焦像差校正方法。首先,通过对Zernike多项式的离焦项和0°像散项进行线性组合得到XY离焦像差的表达式,该XY离焦像差系数的大小可直接表征X离焦和Y离焦的波前PV值。同时,通过微调高能激光器中二维整形光路中的镜子间距,可实现激光器输出光束XY离焦波面的补偿。因此,首先利用哈特曼波前传感器提取出光束的XY离焦像差系数大小,而后再根据XY离焦像差系数的大小实时闭环微调二维整形光路中的镜子间距,从而实现XY离焦像差的校正,改善输出光束的光束质量。实验结果表明,该方法可有效地将高能激光器输出光束XY离焦量的PV值由5.2 μm和1.1 μm校正到0.5 μm以下,相应的光束质量β因子由3.1降到1.8,光束质量得到明显改善。

     

  • 图 1  (a)离焦波前和(b)0°像散波前

    Figure 1.  (a) Defocus wavefront and (b) 0° astigmatism wavefront

    图 2  (a)X离焦波前和(b)Y离焦波前

    Figure 2.  (a) X-defocus wavefront and (b) Y-defocus wavefront

    图 3  X方向整形光路结构示意图

    Figure 3.  Schematic diagram of shaping optical path structure in X direction

    图 4  低阶像差校正实验系统原理图

    Figure 4.  Schematic diagram of low-order aberration correction experiment system

    图 5  高精度电动平移台实物图

    Figure 5.  Physical picture of a high-precision electric displacement platform

    图 6  整形光路中凸柱面镜和凹柱面镜相对共焦间距不同偏移量时的XY离焦量变化曲线。(a)X方向整形光路;(b)Y方向整形光路

    Figure 6.  The XY defocus variation curves with the relatively different deviation of the co-focal distance of the convex cylindrical mirror and the concave cylindrical mirror in the (a) X-direction and (b) Y-direction shaping optical path

    图 7  像差未校正时XY离焦量变化曲线

    Figure 7.  PV curve of XY defocus aberrations with uncorrected aberration

    图 8  像差未校正时出光4.2 s时刻的远场光斑

    Figure 8.  Far-field spot at 4.2 s with uncorrected aberration

    图 9  像差未校正时激光器输出功率随时间的变化曲线

    Figure 9.  Laser output power over time with uncorrected aberration

    图 10  像差闭环校正时XY离焦量变化曲线

    Figure 10.  PV curve of XY defocus aberrations with closed-loop aberration correction

    图 11  像差闭环校正时出光4.2 s时刻的远场光斑

    Figure 11.  Far-field spot at 4.2 s with closed-loop aberration correction

    图 12  像差闭环校正时激光器输出功率随时间的变化曲线

    Figure 12.  Laser output power over time with corrected closed-loop aberration

  • [1] 王艳茹, 王建忠, 冉铮惠, 等. 高能激光光束质量 β因子的影响因素分析[J]. 中国光学,2021,14(2):353-360. doi: 10.37188/CO.2020-0137

    WANG Y R, WANG J ZH, RAN ZH H, et al. Analysis of effects on the beam quality β factor of high power laser[J]. Chinese Optics, 2021, 14(2): 353-360. (in Chinese). doi: 10.37188/CO.2020-0137
    [2] 刘泽金, 周朴, 许晓军. 高能激光光束质量通用评价标准的探讨[J]. 中国激光,2009,36(4):773-778. doi: 10.3788/CJL20093604.0773

    LIU Z J, ZHOU P, XU X J. Study on universal standard for evaluating high energy beam quality[J]. Chinese Journal of Lasers, 2009, 36(4): 773-778. (in Chinese). doi: 10.3788/CJL20093604.0773
    [3] 王启晗, 姚强强, 冯驰. 热透镜焦距和球差影响光束质量的分析模型[J]. 激光与光电子学进展,2018,55(8):081402.

    WANG Q H, YAO Q Q, FENG CH. Analytical model for thermal focal length and spherical aberration on beam quality[J]. Laser & Optoelectronics Progress, 2018, 55(8): 081402. (in Chinese).
    [4] 牛志峰, 郭建增, 周小红. 变形镜受热变形引起的波前畸变仿真及补偿[J]. 强激光与粒子束,2015,27(1):011010. doi: 10.3788/HPLPB20152701.11010

    NIU ZH F, GUO J Z, ZHOU X H. Simulation and compensation of wavefront aberration caused by deformable mirror thermal deformation[J]. High Power Laser and Particle Beams, 2015, 27(1): 011010. (in Chinese). doi: 10.3788/HPLPB20152701.11010
    [5] 胡小川, 彭家琪, 张彬. 变形镜热形变及其对光束质量的影响分析[J]. 中国激光,2015,42(1):0102003. doi: 10.3788/CJL201542.0102003

    HU X CH, PENG J Q, ZHANG B. Thermal distortion of deformable mirror and its influence on beam quality[J]. Chinese Journal of Lasers, 2015, 42(1): 0102003. (in Chinese). doi: 10.3788/CJL201542.0102003
    [6] RODDIER F. Curvature sensing and compensation: a new concept in adaptive optics[J]. Applied Optics, 1988, 27(7): 1223-1225. doi: 10.1364/AO.27.001223
    [7] JEONG T M, KO D K, LEE J. Method of reconstructing wavefront aberrations from the intensity measurement[J]. Optics Letters, 2007, 32(24): 3507-3509. doi: 10.1364/OL.32.003507
    [8] 潘国涛, 闫钰锋, 于信, 等. 矩形大口径激光光束质量评价光学系统设计[J]. 中国光学,2022,15(2):306-317.

    PAN G T, YAN Y F, YU X, et al. Design of optical system for quality evaluation of a large rectangular aperture laser beam[J]. Chinese Optics, 2022, 15(2): 306-317. (in Chinese).
    [9] LAI B H, DONG L ZH, CHEN SH Q, et al. Hybrid adaptive optics system for a solid-state zigzag master oscillator power amplifier laser system[J]. Chinese Optics Letters, 2016, 14(9): 091402. doi: 10.3788/COL201614.091402
    [10] YU X, DONG L ZH, LAI B H, et al. Automatic low-order aberration correction based on geometrical optics for slab lasers[J]. Applied Optics, 2017, 56(6): 1730-1739. doi: 10.1364/AO.56.001730
    [11] 余江川, 田博宇, 钟哲强, 等. 大遮拦比薄管激光环域像差校正方法[J]. 中国激光,2020,47(9):0905001. doi: 10.3788/CJL202047.0905001

    YU J CH, TIAN B Y, ZHONG ZH Q, et al. Method for annular aberration correction of large-aperture thin-wall tube lasers[J]. Chinese Journal of Lasers, 2020, 47(9): 0905001. (in Chinese). doi: 10.3788/CJL202047.0905001
    [12] 李国会, 杜应磊, 徐宏来, 等. 双变形镜对Yb: YAG板条激光器光束质量校正技术[J]. 红外与激光工程,2022,51(8):20210800.

    LI G H, DU Y L, XU H L, et al. Correction of beam quality correction of Yb: YAG laser with double deformable mirrors[J]. Infrared and Laser Engineering, 2022, 51(8): 20210800. (in Chinese).
    [13] 赵宪宇, 薛栋林, 程强. 哈特曼原理子口径斜率扫描检测及误差研究[J]. 红外与激光工程,2019,48(8):0813003. doi: 10.3788/IRLA201948.0813003

    ZHAO X Y, XUE D L, CHENG Q. Research on Hartmann principle based on sub-aperture slope scanning detection and error[J]. Infrared and Laser Engineering, 2019, 48(8): 0813003. (in Chinese). doi: 10.3788/IRLA201948.0813003
    [14] 朱沁雨, 陈梅蕊, 陆焕钧, 等. 微透镜阵列衍射效应对夏克—哈特曼波前探测器的影响分析[J]. 中国光学(中英文),2023,16(1):94-102. doi: 10.37188/CO.2022-0176

    ZHU Q Y, CHEN M R, LU H J, et al. Analysis of influence of diffraction effect of microlens array on Shack-Hartmann wavefront sensor[J]. Chinese Optics, 2023, 16(1): 94-102. (in Chinese). doi: 10.37188/CO.2022-0176
    [15] YANG P, LIU Y, YANG W. Adaptive mode optimization of a continuous-wave solid-state laser using an intracavity piezoelectric deformable mirror[J]. Optics Communications, 2007, 278(2): 377-381. doi: 10.1016/j.optcom.2007.06.043
    [16] 王海铭, 权佳宁, 葛宝臻. 适用于近地面成像的自适应光学系统研究[J]. 中国光学(中英文),2023,16(4):843-852. doi: 10.37188/CO.2022-0230

    WANG H M, QUAN J N, GE B ZH. An adaptive optics system suitable for near-ground imaging[J]. Chinese Optics, 2023, 16(4): 843-852. (in Chinese). doi: 10.37188/CO.2022-0230
    [17] YANG P, NING Y, LEI X, et al. Enhancement of the beam quality of non-uniform output slab laser amplifier with a 39-actuator rectangular piezoelectric deformable mirror[J]. Optics Express, 2010, 18(7): 7121-7130. doi: 10.1364/OE.18.007121
    [18] 张天宇, 王钢, 张熙, 等. 基于焦面复制方法的自适应光学系统静态像差校正技术[J]. 中国光学,2022,15(3):545-551. doi: 10.37188/CO.2021-0182

    ZHANG T Y, WANG G, ZHANG X, et al. Staticaberration correction technique for adaptive optics system based on focal-plane copy approach[J]. Chinese Optics, 2022, 15(3): 545-551. (in Chinese). doi: 10.37188/CO.2021-0182
    [19] LIU G L, YANG H F, RAO CH H, et al. Experimental verification of combinational-deformable-mirror for phase correction[J]. Chinese Optics Letters, 2007, 5(10): 559-562.
    [20] 张雨东, 饶长辉, 李新阳. 自适应光学及激光操控[M]. 北京: 国防工业出版社, 2016: 17-26.

    ZHANG Y D, RAO CH H, LI X Y. Adaptive Optics and Laser Manipulation[M]. Beijing: National Defense Industry Press, 2016: 17-26. (in Chinese)
    [21] MAHAJAN V N. Zernike circle polynomials and optical aberrations of systems with circular pupils[J]. Applied Optics, 1994, 33(34): 8121-8124. doi: 10.1364/AO.33.008121
    [22] 郭建增, 刘铁根, 王振华, 等. 基于整形光路的低阶像差校正方法[J]. 强激光与粒子束,2012,24(8):1797-1800. doi: 10.3788/HPLPB20122408.1797

    GUO J Z, LIU T G, WANG ZH H, et al. Method for lower order aberration correction based on beam shaping[J]. High Power Laser and Particle Beams, 2012, 24(8): 1797-1800. (in Chinese). doi: 10.3788/HPLPB20122408.1797
    [23] 石顺祥, 张海兴, 刘劲松. 物理光学与应用光学[M]. 西安: 西安电子科技大学出版社, 2000: 380-390.

    SHI SH X, ZHANG H X, LIU J S. Physical Optics and Applied Optics[M]. Xi’an: Xi’an University of Electronic Science and Technology Press, 2000: 380-3906. (in Chinese)
    [24] 卢亚雄, 吕百达. 矩阵光学[M]. 大连: 大连理工大学出版社, 1989: 48-82.

    LU Y X, LV B D. Matrix Optics[M]. Dalian: Dalian University of Technology Press, 2000: 380-3906. (in Chinese)
  • 加载中
图(12)
计量
  • 文章访问数:  262
  • HTML全文浏览量:  89
  • PDF下载量:  134
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-20
  • 修回日期:  2023-09-08
  • 网络出版日期:  2023-11-07

目录

    /

    返回文章
    返回