留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大孔径太赫兹波成像光学系统设计

曹一青 沈志娟

曹一青, 沈志娟. 大孔径太赫兹波成像光学系统设计[J]. 中国光学(中英文), 2024, 17(2): 374-381. doi: 10.37188/CO.2023-0129
引用本文: 曹一青, 沈志娟. 大孔径太赫兹波成像光学系统设计[J]. 中国光学(中英文), 2024, 17(2): 374-381. doi: 10.37188/CO.2023-0129
CAO Yi-qing, SHEN Zhi-juan. Design of terahertz wave imaging optical system with large aperture[J]. Chinese Optics, 2024, 17(2): 374-381. doi: 10.37188/CO.2023-0129
Citation: CAO Yi-qing, SHEN Zhi-juan. Design of terahertz wave imaging optical system with large aperture[J]. Chinese Optics, 2024, 17(2): 374-381. doi: 10.37188/CO.2023-0129

大孔径太赫兹波成像光学系统设计

doi: 10.37188/CO.2023-0129
基金项目: 国家自然科学基金项目(No. 62205168);福建省教育厅中青年教师教育科研项目(No. JAT220294);福建省自然科学基金项目(No. 2020J01916)
详细信息
    作者简介:

    曹一青(1987—),男,江西九江人,博士研究生,讲师,硕士生导师,2018年于上海大学获得博士学位,主要从事光学成像系统像差分析及智能优化设计方法等方面研究。E-mail:caoyiqing1987@163.com

  • 中图分类号: O439

Design of terahertz wave imaging optical system with large aperture

Funds: Supported by National Natural Science Foundation of China (No. 62205168); Young and Middle-aged Teachers’ Educational Research Projects of Fujian Province (No. JAT220294); Natural Science Foundation of Fujian Province (No. 2020J01916)
More Information
  • 摘要:

    太赫兹波具有高穿透性、低能性及指纹谱性等特征,被广泛应用于探测领域,因此,设计太赫兹波成像光学系统具有重要的意义和广泛的应用前景。首先,以四块透镜构成的天塞物镜为参考结构,应用近轴光学系统像差理论构建系统像差平衡方程,给出了系统初始结构参数求解函数和方法,再结合光学设计软件进一步校正系统像差,最终设计了一种用于太赫兹波探测的大孔径光学成像系统。该光学系统由4块同轴折射透镜构成,焦距为70 mm,F数为1.4,全视场角为8°,在奈奎斯特频率10 lp/mm处全视场角范围内的调制传递函数(MTF)值均大于0.32,各视场内的弥散斑均方根(RMS)半径均小于艾里斑半径。最后对系统各种公差进行分析和讨论。设计结果表明,本文设计的太赫兹波探测光学成像系统具有孔径大、结构简单且紧凑、成像质量较好且加工性易于实现等特点,满足设计要求,它在太赫兹波段高分辨率探测领域具有重要应用价值。

     

  • 图 1  光学系统基础结构应用薄透镜简化结构和光路图

    Figure 1.  Simplify structure and optical pass diagram using thin lens in optical system infrastructure

    图 2  光学系统初始结构简化及光路图

    Figure 2.  Simplified structure and optical path diagram for initial structure of the optical system

    图 3  优化设计后的光学系统的光学结构及光路图

    Figure 3.  Optical structure and optical path diagram of the optical system after optimization design

    图 4  优化设计后光学系统的调制传递函数曲线图

    Figure 4.  MTF curve diagram of the optical system after optimization design

    图 5  优化设计后光学系统的点列图

    Figure 5.  Spot diagram of the optical system after optimization design

    图 6  优化设计后光学系统的相对照度曲线图

    Figure 6.  Relative illumination curve diagram of the optical system after optimization design

    图 7  优化设计后光学系统的F-Tan (Theta)畸变曲线图

    Figure 7.  F-Tan (Theta) distortion curve diagram of the optical system after optimization design

    图 8  良率预估曲线图

    Figure 8.  Yield estimate curve

    表  1  光学系统设计指标

    Table  1.   Design specifications of the optical system

    Parameter Value
    Wavelength band/μm 30-35
    Effective focal length/mm 70
    Full field of view angle/(°) 8
    F-number 1.4
    Pixel size/μm 52×52
    Pixel 240×320
    下载: 导出CSV

    表  2  光学系统初始结构的一阶光学参量

    Table  2.   First-order optical parameter of the initial structure of the optical system (Unit: mm−1, unless otherwise stated)

    $ \varPhi_{1} $ $ \varPhi_{2} $ $ \varPhi_{3} $ $ \varPhi_{4} $ $ d_{1} $ $ d_{1} $ $ d_{3} $
    −0.0157 0.0356 −0.0201 0.0264 6 mm 15.51 mm 80 mm
    下载: 导出CSV

    表  3  KRS-5和CsBr材料的Sellmeier函数拟合参数

    Table  3.   Sellmeier function fitting parameters of KRS-5 and CsBr materials

    Sellmeier fitting parameters Material
    KRS-5 CsBr
    $ {K}_{1} $ 1.8293958 0.9533786
    $ L_{1} $ 2.25×10−2 8.20189243×10−3
    $ {K}_{2} $ 1.6675593 0.8303809
    $ L_{2} $ 6.25×10−2 2.79396908×10−2
    $ {K}_{3} $ 1.1210424 2.847172
    $ L_{3} $ 0.1225 1.41646892×104
    $ {K}_{4} $ 4.513366×10−2 -
    $ L_{4} $ 0.2025 -
    $ {K}_{5} $ 12.380234 -
    $ L_{3} $ 2.70898681×104 -
    下载: 导出CSV

    表  4  经优化设计后光学系统的光学结构参数

    Table  4.   Optical structure parameters of the optical system after optimization design

    Surface Type Radius
    /mm
    Thickness
    /mm
    Material
    1 Even Aspheric (STOP) −83.93 6.28 CsBr
    2 Even Aspheric 46.66 0.70
    3 Even Aspheric 27.45 14.98 KRS-5
    4 Even Aspheric 185.48 7.65
    5 Even Aspheric −27.00 17.50 CsBr
    6 Standard 32.64 3.25
    7 Even Aspheric 38.61 17.50 KRS-5
    8 Standard 316.43 35.47
    Image plane Standard Infinite
    下载: 导出CSV
  • [1] 金钻明, 郭颖钰, 季秉煜, 等. 超快太赫兹自旋光电子学研究进展(特邀)[J]. 光子学报,2022,51(7):0751410. doi: 10.3788/gzxb20225107.0751410

    JIN Z M, GUO Y Y, JI B Y, et al. Development of ultrafast spin-based terahertz photonics (invited)[J]. Acta Photonica Sinica, 2022, 51(7): 0751410. (in Chinese). doi: 10.3788/gzxb20225107.0751410
    [2] 郑江鹏, 余平, 赵萌, 等. 利用低信噪比小样本太赫兹光谱实现心肌淀粉样变检测[J]. 中国光学,2022,15(3):443-453. doi: 10.37188/CO.2021-0223

    ZHENG J P, YU P, ZHAO M, et al. Detection of myocardial amyloidosis by a small number of terahertz spectra with low signal-to-noise ratio[J]. Chinese Optics, 2022, 15(3): 443-453. (in Chinese). doi: 10.37188/CO.2021-0223
    [3] 马卿效, 李春, 李天莹, 等. 基于太赫兹光谱和机器学习算法的二元及三元混合物定量分析[J]. 激光与光电子学进展,2022,59(19):1930003.

    MA Q X, LI CH, LI T Y, et al. Quantitative analysis of binary and ternary mixtures based on Terahertz spectroscopy and machine learning algorithm[J]. Laser & Optoelectronics Progress, 2022, 59(19): 1930003. (in Chinese).
    [4] 卢雪晶, 葛宏义, 蒋玉英, 等. 太赫兹技术在农产品检测中的应用研究进展[J]. 光谱学与光谱分析,2022,42(11):3330-3335.

    LU X J, GE H Y, JIANG Y Y, et al. Application progress of Terahertz technology in agriculture detection[J]. Spectroscopy and Spectral Analysis, 2022, 42(11): 3330-3335. (in Chinese).
    [5] 胡军, 刘燕德, 孙旭东, 等. 基于BP神经网络的太赫兹时域光谱对面粉中苯甲酸的定量检测研究[J]. 激光与光电子学进展,2020,57(7):302-308.

    HU J, LIU Y D, SUN X D, et al. Quantitative determination of benzoic acid in flour based on Terahertz time-domain spectroscopy and BPNN model[J]. Laser & Optoelectronics Progress, 2020, 57(7): 302-308. (in Chinese).
    [6] 王华泽, 吴晗平, 吕照顺, 等. 太赫兹成像系统分析及其相关技术研究[J]. 红外技术,2013,35(7):391-397.

    WANG H Z, WU H P, LV ZH SH, et al. Research on THz imaging system and related technologies[J]. Infrared Technology, 2013, 35(7): 391-397. (in Chinese).
    [7] 曹恩达, 于勇, 宋长波, 等. 一种手持式太赫兹探测系统的光学及结构设计[J]. 遥测遥控,2020,41(2):1-9.

    CAO E D, YU Y, SONG CH B, et al. An optical and structural design of a hand-held Terahertz detection system based on ZEMAX and ProE[J]. Journal of Telemetry, Tracking and Command, 2020, 41(2): 1-9. (in Chinese).
    [8] 耿贺彬, 李超. 一种太赫兹透镜优化方法[J]. 电子测量技术,2020,43(8):159-165,188. (in Chinese). doi: 10.19651/j.cnki.emt.1903888

    GENG H B, LI CH. Optimization approach for Terahertz lens[J]. Electronic Measurement Technology, 2020, 43(8): 159-165, 188. doi: 10.19651/j.cnki.emt.1903888
    [9] 杨旭, 牟达, 陈炳旭, 等. 基于太赫兹波段的三反变焦系统设计[J]. 长春理工大学学报(自然科学版),2021,44(1):1-6.

    YANG X, MU D, CHEN B X, et al. Design of three reflective zoom system based on Terahertz band[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2021, 44(1): 1-6. (in Chinese).
    [10] 李志雷, 刘海峰, 池威威, 等. 基于太赫兹光谱技术的光学系统设计及应用[J]. 应用光学,2022,43(3):409-414. doi: 10.5768/JAO202243.0301005

    LI ZH L, LIU H F, CHI W W, et al. Design and application of optical system based on Terahertz spectroscopy technology[J]. Journal of Applied Optics, 2022, 43(3): 409-414. (in Chinese). doi: 10.5768/JAO202243.0301005
    [11] 宋菲君, 陈笑, 刘畅. 近代光学系统设计概论[M]. 北京: 科学出版社, 2019.

    SONG F J, CHEN X, LIU CH. An Introduction to the Modern Optical System Design[M]. Beijing: Science Press, 2019. (in Chinese).
    [12] 李梅. 15~38 μm太赫兹波成像光学系统设计研究 [D]. 长春: 长春理工大学, 2006.

    LI M. Design study of 15-38 μm THz spectrum wave band imaging optical system[D]. Changchun: Changchun University of Science and Technology, 2006. (in Chinese).
    [13] BORN M, WOLF E. Principles of Optics[M]. Cambridge: Cambridge University, 2005.
    [14] 史光辉. 用高斯光学和三级像差理论求变焦距物镜的初始解[J]. 中国光学,2018,11(6):1047-1060. doi: 10.3788/co.20181106.1047

    SHI G H. Find preliminary solution of zoom objective lens using Gaussian optics and third-order aberration theory[J]. Chinese Optics, 2018, 11(6): 1047-1060. (in Chinese). doi: 10.3788/co.20181106.1047
    [15] 沈志娟, 曹一青. 大相对孔径长焦距同轴折反射式望远物镜设计[J]. 激光与光电子学进展,2021,58(1):0108002.

    SHEN ZH J, CAO Y Q. Design of a coaxial catadioptric telescope objective with a large relative aperture and long focal length[J]. Laser & Optoelectronics Progress, 2021, 58(1): 0108002. (in Chinese).
    [16] 曹桂丽, 刘芳芳, 贾永丹, 等. 大相对孔径、长焦距的紫外告警光学系统设计[J]. 激光与光电子学进展,2019,56(12):122203.

    CAO G L, LIU F F, JIA Y D, et al. Design of ultraviolet warning optical system with large relative aperture and long focal length[J]. Laser & Optoelectronics Progress, 2019, 56(12): 122203. (in Chinese).
    [17] 李康, 周峰, 王保华, 等. 制冷型被动式消热差红外光学系统设计[J]. 中国光学(中英文),2023,16(4):853-860. doi: 10.37188/CO.2022-0205

    LI K, ZHOU F, WANG B H, et al. Passive athermalization design of a cooled infrared optical system[J]. Chinese Optics, 2023, 16(4): 853-860. (in Chinese). doi: 10.37188/CO.2022-0205
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  117
  • HTML全文浏览量:  46
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-03
  • 修回日期:  2023-08-25
  • 录用日期:  2023-09-28
  • 网络出版日期:  2023-12-14

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!