留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光纤法珀传感器的改进型相位生成载波法解调

周朕蕊 张国强 邱宗甲 郭少朋 李群 邵剑 吴鹏 陆云才

周朕蕊, 张国强, 邱宗甲, 郭少朋, 李群, 邵剑, 吴鹏, 陆云才. 光纤法珀传感器的改进型相位生成载波法解调[J]. 中国光学(中英文), 2024, 17(2): 312-323. doi: 10.37188/CO.2023-0108
引用本文: 周朕蕊, 张国强, 邱宗甲, 郭少朋, 李群, 邵剑, 吴鹏, 陆云才. 光纤法珀传感器的改进型相位生成载波法解调[J]. 中国光学(中英文), 2024, 17(2): 312-323. doi: 10.37188/CO.2023-0108
ZHOU Zhen-rui, ZHANG Guo-qiang, QIU Zong-jia, GUO Shao-peng, LI Qun, SHAO Jian, WU Peng, LU Yun-cai. An improved phase generated carrier demodulation algorithm of fiber optic fabry-perot sensor[J]. Chinese Optics, 2024, 17(2): 312-323. doi: 10.37188/CO.2023-0108
Citation: ZHOU Zhen-rui, ZHANG Guo-qiang, QIU Zong-jia, GUO Shao-peng, LI Qun, SHAO Jian, WU Peng, LU Yun-cai. An improved phase generated carrier demodulation algorithm of fiber optic fabry-perot sensor[J]. Chinese Optics, 2024, 17(2): 312-323. doi: 10.37188/CO.2023-0108

光纤法珀传感器的改进型相位生成载波法解调

doi: 10.37188/CO.2023-0108
基金项目: 国家重点研发计划(No. 2022YFF0708400)
详细信息
    作者简介:

    周朕蕊(1995—),女,湖北武汉人,博士研究生,2020年于中国科学院电工研究所获得硕士学位,目前主要从事先进光学传感器与电力设备在线监测研究。E-mail:zhouzhenrui@mail.iee.ac.cn

    张国强(1964—),男,河北保定人,博士,研究员,博士生导师,1989年于清华大学获得硕士学位,1999年于华北电力大学获得博士学位,主要从事电气设备状态检测与故障诊断机理、先进光学传感器与在线监测仪器研制等方面研究。E-mail:zhanggqi@mail.iee.ac.cn

    邱宗甲(1983—),男,山东人,博士,助理研究员,主要从事先进光学传感器与电力设备在线监测的研究。E-mail:qiuzongjia@mail.iee.ac.cn

    郭少朋:郭少鹏(1974—),男,河南人,博士,助理研究员,主要从事等方面研究。E-mail:gsp@mail.iee.ac.cn

    李 群(1967—),男,博士,研究员级高工,主要从事电力设备故障光纤检测、分布式光纤测温、配电网等方面研究。E-mail:qun_li@sina.com

    邵 剑(1991—),男,硕士,主要从事电气智能化研究。E-mail:18851790705@163.com

    吴 鹏(1983—),男,博士,正高级工程师,主要从事高电压与绝缘技术、输变电等研究。E-mail:15105168844@163.com

    陆云才(1982—),男,硕士,主要从事高电压与绝缘技术研究。E-mail:sixhair@163.com

  • 中图分类号: TH741

An improved phase generated carrier demodulation algorithm of fiber optic fabry-perot sensor

Funds: Supported by the National Key Research and Development of China (No. 2022YFF0708400)
More Information
  • 摘要:

    为解决相位生成载波-反正切解调算法(PGC-Atan)的非线性失真问题,搭建了基于改进型PGC-Atan算法的非本征型法珀传感器(EFPI)解调系统。首先,理论分析了载波相位调制深度(C)偏离最优值、伴生调幅、载波相位延迟等非线性因素对经典PGC-Atan算法中参与反正切运算的正弦与余弦两路信号的影响。然后,针对外调制或伴生调幅较小的情况,提出了一种基于系数补偿的改进型PGC-Atan算法(PGC-CC-Atan)。该算法通过构造与C值和载波相位延迟有关的系数,消除反正切运算中的非线性参数。针对内调制情况,提出了一种基于椭圆拟合的改进型PGC-Atan算法(PGC-EF-Atan)。该算法通过基于分块矩阵的最小二乘法拟合椭圆并提取3个椭圆参数,进而将受非线性因素影响的正弦与余弦两路信号校正为正交信号。最后,通过仿真验证了改进型算法的正确性,并采用高调制特性的垂直腔面发射激光器(VCSEL)和常规腔长的EFPI等搭建PGC解调系统,对比经典PGC-Atan算法与两种改进型算法的解调性能,证实了改进型算法非线性失真抑制的有效性。实验结果表明:一定C值范围内,两种改进型算法可在非线性因素影响下有效解调。PGC-EF-Atan算法相较于PGC-CC-Atan算法,解调信纳比提升了11.602 dB,总谐波失真降低了10.951%。两种改进型算法中,PGC-EF-Atan算法对非线性失真的抑制效果更好,且解调线性度良好,准确度高。

     

  • 图 1  经典PGC-Atan算法原理图

    Figure 1.  Schematic diagram of classical PGC-Atan demodulation

    图 2  PGC-CC-Atan算法原理图

    Figure 2.  Schematic diagram of PGC-CC-Atan demodulation

    图 3  PGC-EF-Atan算法原理图

    Figure 3.  Schematic diagram of PGC-EF-Atan demodulation

    图 4  C值从0.1 rad变化到6.1 rad时3种算法的仿真结果与J1(C)/J2(C)的变化趋势

    Figure 4.  Simulation results of the three algorithms and the variation trend of J1(C)/J2(C) when C deviates from 0.1 rad to 6.1 rad

    图 5  两种非线性因素影响下3种算法的仿真结果

    Figure 5.  Simulation results of the three algorithms under the influence of the two nonlinear factors

    图 6  3种非线性因素影响下PGC-CC-Atan算法仿真结果

    Figure 6.  Simulation results of PGC-CC-Atan algorithm under the influence of the three nonlinear factors

    图 7  3种非线性因素影响下PGC-EF-Atan算法仿真结果

    Figure 7.  Simulation results of PGC-EF-Atan algorithm under the influence of the three nonlinear factors

    图 8  EFPI解调实验平台

    Figure 8.  EFPI demodulation experiment platform

    图 9  不同C值下两种改进型算法解调结果与参考解调仪结果对比

    Figure 9.  Comparison between the demodulation results of the two algorithms under different C and the calibration results of the reference demodulator

    图 10  原始信号(a)波形图与(b)频谱图

    Figure 10.  (a) The waveform and (b) spectrum of the original signal

    图 12  PGC-CC-Atan算法解调结果。(a)波形图;(b)频谱图

    Figure 12.  Demodulation results using PGC-CC-Atan algorithm. (a) Waveform; (b) spectrum

    图 11  经典PGC-Atan算法解调结果。(a)波形图;(b)频谱图

    Figure 11.  Demodulation results using PGC-Atan algorithm. (a) Waveform; (b) spectrum

    图 13  PGC-EF-Atan算法解调结果。(a)波形图;(b)频谱图;(c)P(t)与Q(t)形成的李萨如图

    Figure 13.  Demodulation results of PGC-EF-Atan algorithm. (a) Waveform; (b) spectrum; (c) Lissajous figure of P(t) and Q(t)

    图 14  PGC-EF-Atan算法解调结果与参考解调仪标定结果对比

    Figure 14.  Comparison between the demodulation results of PGC-EF-Atan algorithm and the calibration results of the reference demodulator

    表  1  3种解调算法的性能对比

    Table  1.   Performance comparison of the three demodulation algorithms

    解调方法幅值/radSINAD/dBTHD
    PGC-Atan1.49413.06321.276%
    PGC-CC-Atan0.94715.18912.562%
    PGC-EF-Atan0.91026.7911.611%
    下载: 导出CSV
  • [1] PINET É. Fabry-Perot fiber-optic sensors for physical parameters measurement in challenging conditions[J]. Journal of Sensors, 2009, 2009: 720980.
    [2] 李爱武, 单天奇, 国旗, 等. 光纤法布里-珀罗干涉仪高温传感器研究进展[J]. 中国光学(中英文),2022,15(4):609-624.

    LI A W, SHAN T Q, GUO Q, et al. Research progress of optical fiber Fabry-Perot interferometer high temperature sensors[J]. Chinese Optics, 2022, 15(4): 609-624. (in Chinese).
    [3] YU L, LANG J J, PAN Y, et al. A hybrid demodulation method of fiber-optic Fabry-Perot pressure sensor[J]. Proceedings of SPIE, 2013, 9044: 90441A.
    [4] 张天鹏. 基于冠脉血流储备分数检测的光纤法布里-珀罗传感器研究[D]. 济南: 山东大学, 2019.

    ZHANG T P. Research of fiber Fabry-Perot sensor based on coronary fractional flow reserve detection[D]. Ji’nan: Shandong University, 2019. (in Chinese).
    [5] 张知先, 雷嘉丽, 陈伟根, 等. 基于多参量光纤F-P传感的变压器局部放电与油温传感方法[J]. 高电压技术,2022,48(1):58-65.

    ZHANG ZH X, LEI J L, CHEN W G, et al. Transformer’s partial discharge and oil temperature sensing method based on multi-parameter fiber optic F-P Sensing[J]. High Voltage Engineering, 2022, 48(1): 58-65. (in Chinese).
    [6] LIU W, YANG T Y, SHI Y J, et al. White light interference demodulation of optical fiber Fabry-Perot micro-pressure sensors based on the Karhunen-Loeve transform and singular value decomposition[J]. Optics Express, 2022, 30(4): 5618-5633. doi: 10.1364/OE.450548
    [7] HUANG Y, WANG SH, JIANG J F, et al. Orthogonal phase demodulation of optical fiber Fabry-Perot interferometer based on birefringent crystals and polarization technology[J]. IEEE Photonics Journal, 2020, 12(3): 7101209.
    [8] 江毅, 江树桓. 光纤激光干涉测量技术在EFPI传感器信号解调中的研究进展[J]. 激光与光电子学进展,2021,58(13):1306017.

    JIANG Y, JIANG SH H. Research progress on fiber optical laser interferometry in signal demodulation of EFPI sensor[J]. Laser & Optoelectronics Progress, 2021, 58(13): 1306017. (in Chinese).
    [9] WANG F Y, XIE J H, HU ZH L, et al. Interrogation of extrinsic Fabry-Perot sensors using path-matched differential interferometry and phase generated carrier technique[J]. Journal of Lightwave Technology, 2015, 33(12): 2392-2397. doi: 10.1109/JLT.2014.2379943
    [10] 符浩. F-P声压传感器的PGC解调及复用技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.

    FU H. PGC demodulation and multiplexing research based on Fabry-Perot fiber acoustic sensor[D]. Harbin: Harbin Institute of Technology, 2018. (in Chinese).
    [11] 孙韦, 于淼, 常天英, 等. 相位生成载波解调方法的研究[J]. 光子学报,2018,47(8):0806004. doi: 10.3788/gzxb20184708.0806004

    SUN W, YU M, CHANG T Y, et al. Research and improvement based on PGC demodulation method[J]. Acta Photonica Sinica, 2018, 47(8): 0806004. (in Chinese). doi: 10.3788/gzxb20184708.0806004
    [12] 施清平, 王利威, 张敏, 等. 一种消除伴生调幅的光源调频型相位生成载波解调方法[J]. 光电子·激光,2011,22(2):180-184. doi: 10.16136/j.joel.2011.02.032

    SHI Q P, WANG L W, ZHANG M, et al. Frequency-modulated phase generated carrier demodulation for eliminating companion amplitude modulation[J]. Journal of Optoelectronics·Laser, 2011, 22(2): 180-184. (in Chinese). doi: 10.16136/j.joel.2011.02.032
    [13] VOLKOV A V, PLOTNIKOV M Y, MEKHRENGIN M V, et al. Phase modulation depth evaluation and correction technique for the PGC demodulation scheme in fiber-optic interferometric sensors[J]. IEEE Sensors Journal, 2017, 17(13): 4143-4150. doi: 10.1109/JSEN.2017.2704287
    [14] HOU CH B, GUO SH. Automatic carrier phase delay synchronization of PGC demodulation algorithm in fiber-optic interferometric sensors[J]. KSII Transactions on Internet and Information System, 2020, 14(7): 2891-2903.
    [15] 胡雨润, 王目光, 孙春然, 等. 光纤干涉传感器相位生成载波解调算法研究[J]. 激光技术,2022,46(2):213-219. doi: 10.7510/jgjs.issn.1001-3806.2022.02.011

    HU Y R, WANG M G, SUN CH R, et al. Research on improvement of phase generated carrier demodulation algorithm for fiber optic interferometric sensor[J]. Laser Technology, 2022, 46(2): 213-219. (in Chinese). doi: 10.7510/jgjs.issn.1001-3806.2022.02.011
    [16] QU ZH Y, GUO SH, HOU CH B, et al. Real-time self-calibration PGC-Arctan demodulation algorithm in fiber-optic interferometric sensors[J]. Optics Express, 2019, 27(16): 23593-23609. doi: 10.1364/OE.27.023593
    [17] HOU CH B, LIU G W, GUO SH, et al. Large dynamic range and high sensitivity PGC demodulation technique for tri-component fiber optic seismometer[J]. IEEE Access, 2020, 8: 15085-15092. doi: 10.1109/ACCESS.2020.2966280
    [18] 严利平, 周春宇, 谢建东, 等. 基于卡尔曼滤波的PGC解调非线性误差补偿方法[J]. 中国激光,2020,47(9):0904002. doi: 10.3788/CJL202047.0904002

    YAN L P, ZHOU CH Y, XIE J D, et al. Nonlinear error compensation method for PGC demodulation based on Kalman filtering[J]. Chinese Journal of Lasers, 2020, 47(9): 0904002. (in Chinese). doi: 10.3788/CJL202047.0904002
    [19] 畅楠琪, 黄晓砥, 王海斌. 基于EKF参数估计的光纤水听器PGC解调方法研究[J]. 中国激光,2022,49(17):1709001.

    CHANG N Q, HUANG X D, WANG H B. Phase generated carrier demodulation approach in fiber-optic hydrophone based on extended Kalman filter parameter estimation[J]. Chinese Journal of Lasers, 2022, 49(17): 1709001. (in Chinese).
    [20] FITZGIBBON A, PILU M, FISHER R B. Direct least square fitting of ellipses[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21(5): 476-480. doi: 10.1109/34.765658
    [21] HALÍŘ R, FLUSSER J. Numerically stable direct least squares fitting of ellipses[C]. Proceedings of the 6th International Conference in Central Europe on Computer Graphics and Visualization, 1998.
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  139
  • HTML全文浏览量:  61
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-04
  • 修回日期:  2023-08-22
  • 网络出版日期:  2023-11-07

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!