留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大气湍流对高分辨率遥感卫星的成像影响研究

毛红敏 丁致雅 杨燕燕 江苏奇 彭建涛 曹楠 胡立发 曹召良

毛红敏, 丁致雅, 杨燕燕, 江苏奇, 彭建涛, 曹楠, 胡立发, 曹召良. 大气湍流对高分辨率遥感卫星的成像影响研究[J]. 中国光学(中英文), 2024, 17(1): 167-177. doi: 10.37188/CO.2023-0083
引用本文: 毛红敏, 丁致雅, 杨燕燕, 江苏奇, 彭建涛, 曹楠, 胡立发, 曹召良. 大气湍流对高分辨率遥感卫星的成像影响研究[J]. 中国光学(中英文), 2024, 17(1): 167-177. doi: 10.37188/CO.2023-0083
MAO Hong-min, DING Zhi-ya, YANG Yan-yan, JIANG Su-qi, PENG Jian-tao, CAO Nan, HU Li-fa, CAO Zhao-liang. Effect of atmospheric turbulence on imaging quality of high-resolution remote sensing satellites[J]. Chinese Optics, 2024, 17(1): 167-177. doi: 10.37188/CO.2023-0083
Citation: MAO Hong-min, DING Zhi-ya, YANG Yan-yan, JIANG Su-qi, PENG Jian-tao, CAO Nan, HU Li-fa, CAO Zhao-liang. Effect of atmospheric turbulence on imaging quality of high-resolution remote sensing satellites[J]. Chinese Optics, 2024, 17(1): 167-177. doi: 10.37188/CO.2023-0083

大气湍流对高分辨率遥感卫星的成像影响研究

doi: 10.37188/CO.2023-0083
基金项目: 吉林省科技发展计划(No. 20220203033SF);“十四五”江苏省重点学科(No. 2021135);中国航天科技集团公司第八研究院产学研合作基金(No. SAST2020-025)
详细信息
    作者简介:

    毛红敏(1976—),女,河北邢台人,博士,副教授,主要从事光学设计、激光雷达以及大气湍流的影响分析。E-mail: hongminmao@mail.usts.edu.cn

    曹召良(1974 —),男,河南济源人,博士,教授,博士生导师,2008 年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事液晶自适应光学系统、光学设计、光学实验以及理论分析和模拟。E-mail:caozl@usts.edu.cn

  • 中图分类号: O436

Effect of atmospheric turbulence on imaging quality of high-resolution remote sensing satellites

Funds: Supported by Jilin Province Science and Technology Development Plan (No. 20220203033SF);Jiangsu Key Disciplines of the Fourteenth Five-Year Plan (No. 2021135);the Industry-University-Institute Cooperation Foundation of Eighth Institute of China Aerospace and Technology (No. SAST2020-025)
More Information
  • 摘要:

    遥感卫星在国防和民用探测等领域发挥着重要作用,而大气湍流严重影响高分辨率遥感卫星的成像质量。本文重点研究了遥感卫星对地探测时,相机口径、卫星轨高和大气湍流强度对空间相机成像质量的影响。首先,基于球面波传输模型和Kolmogorov湍流理论,针对空对地探测湍流波前进行仿真。然后,分析畸变波前随相机口径、卫星轨高和大气相干长度的变化规律,并推导出普适公式。在此基础上,进一步推导出空间相机成像分辨率随相机口径、卫星轨高和大气相干长度变化的计算公式。最后,研究了大气湍流对空间相机调制传递函数(MTF)的影响,并以MTF=0.15为基准,仿真分析了MTF相对误差随相机口径、卫星轨高和大气相干长度的变化规律。本研究为高分辨率遥感卫星的设计、分析和评估提供理论依据。

     

  • 图 1  卫星对地面目标探测示意图

    Figure 1.  Schematic diagram of satellite detection to ground target

    图 2  折射率结构常数$C_{{n}}^2 $随高度z的变化曲线

    Figure 2.  Refractive index structure constant $C_{{n}}^2 $ varying with height z

    图 3  仿真湍流波前

    Figure 3.  Simulated turbulence wavefront

    图 4  相机口径DWRMS的影响

    Figure 4.  Influence of camera aperture D on WRMS

    图 5  卫星轨道高度HWRMS的影响

    Figure 5.  Influence of satellite orbital height H on WRMS

    图 6  大气相干长度r0WRMS的影响

    Figure 6.  Influence of atmospheric coherence length r0 on WRMS

    图 7  (a) 不同参量值下的仿真值与理论值及(b)仿真值与理论值的相对误差

    Figure 7.  (a) Simulated and theoretical values under different parameters; (b) relative error for simulated and theoretical values

    图 8  波前均方根随大气湍流强度和卫星高度的变化规律

    Figure 8.  Variation of root mean square of wavefront with atmospheric turbulence intensity and satellite altitude

    图 9  角分辨率随卫星高度和相机口径的变化规律

    Figure 9.  Variation of angular resolution with satellite altitude and camera aperture

    图 10  线分辨率随卫星高度的变化规律

    Figure 10.  Variation of line resolution with satellite altitude

    图 11  100组湍流波前在x方向的MTF曲线

    Figure 11.  MTF curves of 100 sets of turbulent wavefronts in the x-direction

    图 12  调制传递函数随不同参数的变化曲线

    Figure 12.  Curve of modulation transfer function varying with different parameters

    图 13  MTF相对误差随不同参数的变化规律

    Figure 13.  Variation of relative deviation of MTF with different parameters

    表  1  随机选取的变量

    Table  1.   Randomly selected variables

    1 2 3 4 5 6 7 8
    D/(m) 2 2 4 4 6 6 8 8
    H/(km) 200 500 150 250 100 350 150 600
    r0/(cm) 3 8 4 9 5 7 10 2
    下载: 导出CSV
  • [1] WANG H B, GONG X SH, WANG B B, et al. Urban development analysis using built-up area maps based on multiple high-resolution satellite data[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 103: 102500. doi: 10.1016/j.jag.2021.102500
    [2] 苏云, 葛婧菁, 王业超, 等. 航天高分辨率对地光学遥感载荷研究进展[J]. 中国光学(中英文),2023,16(2):258-282. doi: 10.37188/CO.2022-0085

    SU Y, GE J J, WANG Y CH, et al. Research progress on high-resolution imaging system for optical remote sensing in aerospace[J]. Chinese Optics, 2023, 16(2): 258-282. (in Chinese) doi: 10.37188/CO.2022-0085
    [3] MU Q Q, CAO ZH L, LI D Y, et al. Adaptive optics technique to overcome the turbulence in a large-aperture collimator[J]. Applied Optics, 2008, 47(9): 1298-1301. doi: 10.1364/AO.47.001298
    [4] 曹宗新, 曹楠, 杨燕燕, 等. 大气湍流对高分辨率遥感卫星定位精度的影响分析[J]. 中国光学(中英文),2023,16(3):550-558. doi: 10.37188/CO.2022-0196

    CAO Z X, CAO N, YANG Y Y, et al. Effect of atmospheric turbulence on the tracking accuracy of high-resolution remote sensing satellites[J]. Chinese Optics, 2023, 16(3): 550-558. (in Chinese) doi: 10.37188/CO.2022-0196
    [5] TYSON R K. Principles of Adaptive Optics[M]. 3rd ed. Boca Raton: CRC Press, 2010: 25-36.
    [6] FRIED D L. Optical resolution through a randomly inhomogeneous medium for very long and very short exposures[J]. Journal of the Optical Society of America, 1966, 56(10): 1372-1379. doi: 10.1364/JOSA.56.001372
    [7] KOLMOGOROV A N. Dissipation of energy in the locally isotropic turbulence[J]. Proceedings of the Royal Society Series A: Mathematical, Physical and Engineering Sciences, 1991, 434(1890): 15-17.
    [8] FRIED D L. Limiting resolution looking down through the atmosphere[J]. Journal of the Optical Society of America, 1966, 56(10): 1382-1384.
    [9] HUFNAGEL R E, STANLEY N R. Modulation transfer function associated with image transmission through turbulent media[J]. Journal of the Optical Society of America, 1964, 54(1): 52-60. doi: 10.1364/JOSA.54.000052
    [10] 阎吉祥, 俞信. 大气湍流对遥感系统分辨力的影响[J]. 光学技术,2004,30(1):68-69. doi: 10.3321/j.issn:1002-1582.2004.01.032

    YAN J X, YU X. Effect of the turbulence on the image resolution of the remote sensing system[J]. Optical Technique, 2004, 30(1): 68-69. (in Chinese) doi: 10.3321/j.issn:1002-1582.2004.01.032
    [11] 张晓芳, 俞信, 阎吉祥. 大气湍流对光学系统图像分辨力的影响[J]. 光学技术,2005,31(2):263-265. doi: 10.3321/j.issn:1002-1582.2005.02.029

    ZHANG X F, YU X, YAN J X, et al. Influence of atmospheric turbulence on image resolution of optical sensing system[J]. Optical Technique, 2005, 31(2): 263-265. (in Chinese) doi: 10.3321/j.issn:1002-1582.2005.02.029
    [12] 王仁礼, 郝振纯, 陈波, 等. 大气湍流对天基遥感系统地面分辨率的影响[J]. 测绘科学技术学报,2009,26(2):114-117. doi: 10.3969/j.issn.1673-6338.2009.02.010

    WANG R L, HAO ZH CH, CHEN B, et al. Effect of Atmospheric turbulence on image ground-resolution of space-based remote sensing system[J]. Journal of Geomatics Science and Technology, 2009, 26(2): 114-117. (in Chinese) doi: 10.3969/j.issn.1673-6338.2009.02.010
    [13] 陈欣欣, 苑克娥, 时东锋, 等. 大气湍流对空基光学成像系统影响的仿真研究[J]. 光学学报,2022,42(18):1801002. doi: 10.3788/AOS202242.1801002

    CHEN X X, YUAN K E, SHI D F, et al. Simulation study on the effect of atmospheric turbulence on space-based optical imaging system[J]. Acta Optica Sinica, 2022, 42(18): 1801002. (in Chinese) doi: 10.3788/AOS202242.1801002
    [14] RODDIER F. The effects of atmospheric turbulence in optical astronomy[J]. Progress in Optics, 1981, 19: 281-376.
    [15] 周仁忠. 自适应光学[M]. 北京: 国防工业出版社, 1996: 24-28.

    ZHOU R ZH. Adaptive Optics[M]. Beijing: National Defense Industry Press, 1996: 24-28. (in Chinese)
    [16] 曹青华. 光束通过湍流大气干涉的初步探讨[D]. 成都: 电子科技大学, 2006: 15.

    CAO Q H. Preliminary discussion on interference of light beams through turbulent atmosphere[D]. Chengdu: University of Electronic Science and Technology, 2006: 15. (in Chinese)
    [17] NOLL R J. Zernike polynomials and atmospheric turbulence[J]. Journal of the Optical Society of America, 1976, 66(3): 207-211. doi: 10.1364/JOSA.66.000207
    [18] RODDIER N A. Atmospheric wavefront simulation using Zernike polynomials[J]. Optical Engineering, 1990, 29(10): 1174-1180. doi: 10.1117/12.55712
    [19] 王凯迪. 大气湍流波前畸变的自适应光学校正技术研究[D]. 西安: 中国科学院大学, 2021: 37.

    WANG K D. Research on correction technology of wavefront distortion from atmospheric turbulent by adaptive system[D]. Xi'an: University of Chinese Academy of Sciences, 2021: 37. (in Chinese)
    [20] TYLER D W, PROCHKO A E. Adaptive optics design for the advanced electro-optical system[R]. Albuquerque: Rockwell International Corp, 1994: 32.
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  194
  • HTML全文浏览量:  93
  • PDF下载量:  149
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-08
  • 修回日期:  2023-05-17
  • 网络出版日期:  2023-09-22

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!