-
摘要:
随着制冷型长波红外焦平面探测器空间分辨率及面阵规格的提升,制冷型长波红外热像仪应用范围越来越广,需提升相应光学系统以满足不同领域需求。长波红外变焦光学系统相对于中波红外变焦光学系统存在可用材料少、系统高低温环境无热化难度大等难题。本文采用机械补偿变焦技术实现光学多视场变焦,利用主动补偿的消热差技术达到系统在−40 °C~+65 °C温度范围成像清晰,实现四片透镜架构的制冷型长波红外四视场光学系统设计。该光学系统四视场焦距分别为25 mm、109 mm、275 mm、400 mm,变倍比为15.0×,光学系统包络尺寸为268 mm(长)×200 mm(宽),光学零件总质量618 g。该光学系统具有质量轻、性能高、成本低等SWaP-C特征,将在辅助导航、搜索、跟踪等安防领域中得到广泛应用。
Abstract:With the improvement of the spatial resolution and area array specifications of the cooled LWIR focal plane detector, the application range of the cooled LWIR thermal imager is becoming wider and wider, and the corresponding optical system needs to be improved to meet the needs of different fields. Compared with the MWIR optical zoom system, the LWIR optical zoom system has fewer available materials and is difficult to athermalize in high and low temperature environments. In this paper, the multi-field optical zoom system is realized by using mechanical compensation zoom technology, and the active compensation athermalization technology is used to make the system image clear from −40 °C to +65 °C, to realize the design of the four-field LWIR optical system with four lenses. The focal lengths of the four fields of view are 25 mm, 109 mm, 275 mm and 400mm, the zoom ratio is 15, the envelope of the optical system is 280 mm(L)×200 mm(W), and the total weight of the optical components is 618 g. The optical system has SWaP-C characteristics such as light weight, high performance, and low cost, and will be widely used in security fields such as auxiliary navigation, search, and tracking.
-
Key words:
- cooled long-wave infrared /
- zoom optic system /
- mechanical compensation /
- athermalization
-
表 1 光学系统技术指标
Table 1. Parameters of optical system
Spectral range 7.7 μm~9.5 μm Horizontal field of view 21.0°、5.0°、2.0°、1.38° Focal length /mm 25、109、275、400 F# 15.0∶1 Focal length /mm 25、109、275、400 Working temperature −40℃~65℃ 表 2 光学系统初始参数取值
Table 2. Initial parameters of optical system
ZR $ f_2' $ $ f_3' $ $ \beta _2' $ 15 −1 1.62 −1.45 $ \beta _3' $ $ \beta _4' $ $ {d}_{12} $ $ {d_{34}} $ −1.34 1 0.55 0.55 表 3 变焦系统初始间隔
Table 3. Zoom system initial spacing
系统焦距(mm) 400 275 109 25 f1/f2 间隔(mm) 133.2 126.8 105.3 23.6 f2/f3 间隔(mm) 16.3 36.1 82.2 192.1 f3/f4 间隔(mm) 89.8 76.4 51.8 23.6 表 4 公差最严重项目
Table 4. Maximum tolerance items
公差操作项 表面 设置值(mm) RMS改变值(mm) TSDX 5 ±0.005 0.00315 TSDY 5 ±0.005 0.00315 TSDX 6 ±0.005 0.00315 TSDY 6 ±0.005 0.00315 TIRR 2 ±0.5 0.00089 -
[1] 王卫杰, 黄俭, 袁光福, 等. 空基红外系统作用距离建模及应用分析[J]. 光学 精密工程,2020,28(6):1295-1302. doi: 10.3788/OPE.20202806.1295WANG W J, HUANG J, YUAN G F, et al. Modeling and application analysis of operating range of air-based infrared system[J]. Optics and Precision Engineering, 2020, 28(6): 1295-1302. (in Chinese) doi: 10.3788/OPE.20202806.1295 [2] 杨乐, 孙强, 王健, 等. 长波红外连续变焦光学系统设计[J]. 红外与激光工程,2012,41(4):999-1000.YANG L, SUN Q, WANG J, et al. Design of long-wave infrared continuous zoom optical system[J]. Infrared and Laser Engineering, 2012, 41(4): 999-1000. (in Chinese) [3] 陈吕吉, 李萍, 孙琪艳. 20×长波红外连续变焦光学系统设计[J]. 红外技术,2012,41(4):458-462.CHEN L J, LI P, SUN Q Y. Design of LWIR zoom optical system with 20: 1 zoom range[J]. Infrared Technology, 2012, 41(4): 458-462. (in Chinese) [4] 贾星蕊, 李训牛, 王海洋, 等. 大变倍比长波红外连续变焦光学系统设计[J]. 红外技术,2012,34(8):463-466.JIA X R, LI X N, WANG H Y, et al. Design of a LWIR continuous zooming optic system with large zooming range[J]. Infrared Technology, 2012, 34(8): 463-466. (in Chinese) [5] 单秋莎, 谢梅林, 刘朝晖, 等. 制冷型长波红外光学系统设计[J]. 中国光学,2022,15(1):72-78. doi: 10.37188/CO.2021-0116SHAN Q SH, XIE M L, LIU ZH H, et al. Design of cooled long-wavelength infrared imaging optical system[J]. Chinese Optics, 2022, 15(1): 72-78. (in Chinese) doi: 10.37188/CO.2021-0116 [6] RAJU G, ACHTNER B, HÜBNER M. High performance cooled LWIR imager optics for optronics mast systems[J]. Proceedings of SPIE, 2021, 11740: 1174005. doi: 10.1117/12.2585368 [7] MEI CH, LIANG CH G, MA Y J, et al. Comparison of short focal length dual-fields LWIR optical lens[J]. Proceedings of SPIE, 2020, 11567: 115670V. doi: 10.1117/12.2575902 [8] 吴海清, 赵新亮, 李同海, 等. 长波红外双组联动连续变焦光学系统设计[J]. 红外技术,2019,41(7):678-682.WU H Q, ZHAO X L, LI T H, et al. Design of a long wave infrared double-linkage continuous zoom optical system[J]. Infrared Technology, 2019, 41(7): 678-682. (in Chinese) [9] 何红星. 分孔径三视场中波红外光学系统[J]. 光学 精密工程,2017,25(7):1757-1763.HE H X. MWIR optical system with dual-optical aperture and three fields of view[J]. Optics and Precision Engineering, 2017, 25(7): 1757-1763. (in Chinese) [10] 张坤, 曲正, 钟兴, 等. 30倍轻小型变焦光学系统设计[J]. 光学 精密工程,2022,30(11):1263-1271. doi: 10.37188/OPE.20223011.1263ZHANG K, QU ZH, ZHONG X, et al. Design of 30× zoom optical system with light weight and compact size[J]. Optics and Precision Engineering, 2022, 30(11): 1263-1271. (in Chinese) doi: 10.37188/OPE.20223011.1263 [11] 陶纯堪. 变焦距光学系统设计[M]. 北京: 国防工业出版社, 1988.TAO CH K. Zoom Focus Optics system Design[M]. Beijing: National Defense Industry Press, 1988. (in Chinese) [12] 任国栋, 张良, 兰卫华, 等. 红外成像系统冷反射的定量分析[J]. 红外技术,2016,38(4):290-295.REN G D, ZHANG L, LAN W H, et al. Quantitative analysis of the narcissus of infrared imaging system[J]. Infrared Technology, 2016, 38(4): 290-295. (in Chinese) [13] 宋菲君, 陈笑, 刘畅. 近代光学系统设计概论[M]. 北京: 科学出版社, 2019.SONG F J, CHEN X, LIU CH. Introduction to Modern Optical System Design[M]. Beijing: Science Press, 2019. (in Chinese) (查阅网上资料, 未找到对应的英文翻译, 请确认) . -