留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CsPbBr3纳米晶电子辐照效应研究

张博文 韩丹 薛梦芸 曹荣幸 李红霞 曾祥华 薛玉雄

张博文, 韩丹, 薛梦芸, 曹荣幸, 李红霞, 曾祥华, 薛玉雄. CsPbBr3纳米晶电子辐照效应研究[J]. 中国光学(中英文), 2024, 17(1): 178-186. doi: 10.37188/CO.2023-0044
引用本文: 张博文, 韩丹, 薛梦芸, 曹荣幸, 李红霞, 曾祥华, 薛玉雄. CsPbBr3纳米晶电子辐照效应研究[J]. 中国光学(中英文), 2024, 17(1): 178-186. doi: 10.37188/CO.2023-0044
ZHANG Bo-wen, HAN Dan, XUE Meng-yun, CAO Rong-xing, LI Hong-xia, ZENG Xiang-hua, XUE Yu-xiong. Effect of electron irradiation on CsPbBr3 perovskite nanocrystal[J]. Chinese Optics, 2024, 17(1): 178-186. doi: 10.37188/CO.2023-0044
Citation: ZHANG Bo-wen, HAN Dan, XUE Meng-yun, CAO Rong-xing, LI Hong-xia, ZENG Xiang-hua, XUE Yu-xiong. Effect of electron irradiation on CsPbBr3 perovskite nanocrystal[J]. Chinese Optics, 2024, 17(1): 178-186. doi: 10.37188/CO.2023-0044

CsPbBr3纳米晶电子辐照效应研究

doi: 10.37188/CO.2023-0044
基金项目: 国家自然科学基金资助(No. 12004329);强脉冲辐射环境模拟与效应国家重点实验室开放基金(No. SKLIPR2115);空间环境材料行为及评价技术国家级重点实验室基金(No. WDZC-HGD-2022-11)
详细信息
    作者简介:

    张博文(1999—),男,江苏盐城人,硕士研究生,主要从事材料辐射效应研究,结构光学表征模拟研究。E-mail:ZBW13365187700@hotmail.com

    韩 丹(1993—),男,吉林长春人,博士,讲师,2021年于山东大学获得博士学位,现为扬州大学电气与能源动力工程学院讲师,主要从事微纳尺度热传导研究、二维材料载流子输运机制分析、二维材料机械性质分析,材料辐射屏蔽效应等方面的研究工作。E-mail:han@yzu.edu.cn

    薛玉雄(1975—),男,陕西佳县人,教授。现为扬州大学电气与能源动力工程学院教授,校特聘教授。主要从事空间辐射效应及空间环境探测技术研究。E-mail:xyxue@yzu.edu.cn

  • 中图分类号: O76;O43

Effect of electron irradiation on CsPbBr3 perovskite nanocrystal

Funds: Supported by National Natural Science Foundation of China (No.12004329); Open Project of State Key Laboratory of Intense Pulsed Radiation Simulation and Effect (No. SKLIPR2115); Foundation of National Key Laboratory of Materials Behavior and Evaluation Technology in Space Environment (No. WDZC-HGD-2022-11)
More Information
  • 摘要:

    钙钛矿材料具有优异的光学性能和较高的载流子迁移率,成为空间太阳能电池领域极具竞争力的材料。然而空间粒子辐照容易改变材料结构和光学性能,导致其性能下降。为了探究电子辐照对CsPbBr3材料结构与光学特性的影响规律,本文开展了CsPbBr3材料电子辐照实验,利用高分辨透射电子显微镜表征CsPbBr3纳米晶微观形貌,并通过X射线衍射分析和X射线光电子能谱分析进一步探究晶体结构的变化趋势。研究发现:电子辐照后CsPbBr3纳米晶形貌变得粗糙,尺寸明显减小,并且纳米晶在高剂量电子辐照下变得紧凑,形成纳米团簇。其次,通过稳态紫外-可见吸收光谱图与光致发光谱图表征CsPbBr3材料的光学性能,并利用第一性原理计算分析辐照后晶格膨胀带来的带隙变化。研究证明电子辐照后纳米晶颜色加深,影响钙钛矿的透光率,进而增强了样品对光的吸收性能,同时电子辐照能够分解CsPbBr3纳米晶,特别是高剂量辐照后其光致发光性能降低了53.7%~78.6%。本文研究结果为钙钛矿纳米晶空间辐射损伤机理及应用研究提供了数据支撑。

     

  • 图 1  CsPbBr3材料高分辨透射电子显微镜图像

    Figure 1.  High-resolution transmission electron microscopy image of the CsPbBr3 material

    图 2  (a) CsPbBr3材料的TEM图像;(b)能量为2 MeV的电子的入射情况

    Figure 2.  (a) The TEM image of the CsPbBr3 material; (b) the incidence of electrons with an energy of 2 MeV

    图 3  (a) PNC-0;(b) PNC-5;(c) PNC-25;(d) PNC-50样品图

    Figure 3.  Sample diagrams of (a) PNC-0, (b) PNC-5, (c) PNC-25, and (d) PNC-50

    图 4  PNC-0, PNC-5, PNC-25, PNC-50的(a-d)TEM图像和(e-h)HRTEM图像

    Figure 4.  (a-d) The TEM images and (e-h) HRTEM images of PNC-0, PNC-5, PNC-25, and PNC-50

    图 5  PNC-0,PNC-5,PNC-25,PNC-50的 (a) XRD图;(b) Br 3d轨道的XPS图谱;(c) Pb 4f轨道的XPS图谱;(d) Si 2p轨道的XPS图谱

    Figure 5.  (a) The XRD patterns of PNC-0, PNC-5, PNC-25, and PNC-50; (b-d) the XPS patterns of Br 3d, Pb 4f, and Si 2p orbits

    图 6  PNC-0,PNC-5,PNC-25,PNC-50的(a)吸收光谱和(b)带隙分布

    Figure 6.  (a) The optical absorption spectra and (b) the band gap distribution of PNC-0, PNC-5, PNC-25, and PNC-50

    图 7  PNC-0,PNC-5,PNC-25,PNC-50光致发光光谱

    Figure 7.  Photoluminescence spectra of PNC-0, PNC-5, PNC-25, and PNC-50

    图 8  CsPbBr3材料带隙随应变的变化

    Figure 8.  The band gap of CsPbBr3 material changes with strain

    图 9  (a) PNC-5,(b) PNC-25,(c) PNC-50高温退火后样品图

    Figure 9.  The sample diagrams of annealed (a) PNC-5, (b) PNC-25, and (c) PNC-50

    图 10  退火过后PNC-0,PNC-5,PNC-25,PNC-50的光致发光光谱

    Figure 10.  Photoluminescence spectra of PNC-0, PNC-5, PNC-25, and PNC-50 after annealing

  • [1] 翟彤彤, 李云辉, 朱建伟, 等. 卤化物钙钛矿纳米晶的电化学发光研究进展[J]. 分析化学,2023,51(5):642-651.

    ZHAI T T, LI Y H, ZHU J W, et al. Progress in electrochemiluminescence of halide perovskites nanocrystals[J]. Chinese Journal of Analytical Chemistry, 2023, 51(5): 642-651. (in Chinese)
    [2] 王婷, 魏奇, 付强, 等. 钙钛矿光伏电池封装材料与工艺研究进展[J]. 应用化学,2022,39(9):1321-1344.

    WANG T, WEI Q, FU Q, et al. Review of perovskite photovoltaic cell encapsulation material and technology[J]. Chinese Journal of Applied Chemistry, 2022, 39(9): 1321-1344. (in Chinese)
    [3] 董国华, 郝丽娟, 张文治, 等. 碳量子点纳米材料在铅卤钙钛矿太阳能电池中的应用研究进展[J]. 应用化学,2022,39(5):707-722.

    DONG G H, HAO L J, ZHANG W ZH, et al. Recent progress on the application of carbon quantum dots nano-materials in lead halogen perovskite solar photoelectric devices[J]. Chinese Journal of Applied Chemistry, 2022, 39(5): 707-722. (in Chinese)
    [4] GREEN M A, HO-BAILLIE A, SNAITH H J. The emergence of perovskite solar cells[J]. Nature Photonics, 2014, 8(7): 506-514. doi: 10.1038/nphoton.2014.134
    [5] STOUMPOS C C, KANATZIDIS M G. The renaissance of halide perovskites and their evolution as emerging semiconductors[J]. Accounts of Chemical Research, 2015, 48(10): 2791-2802. doi: 10.1021/acs.accounts.5b00229
    [6] LIU X, LI J, WANG X, et al. Inorganic lead-based halide perovskites: from fundamental properties to photovoltaic applications[J]. Materials Today, 2022, 61: 191-217. doi: 10.1016/j.mattod.2022.11.002
    [7] TU Y G, WU J, XU G N, et al. Perovskite solar cells for space applications: progress and challenges[J]. Advanced Materials, 2021, 33(21): 2006545. doi: 10.1002/adma.202006545
    [8] 吴闻迪, 余婷, 陶蒙蒙, 等. 掺铥光纤γ射线辐照效应实验研究[J]. 中国光学,2018,11(4):610-614. doi: 10.3788/co.20181104.0610

    WU W D, YU T, TAO M M, et al. Experimental investigation of gamma-ray irradiation effect on Tm-doped fibers[J]. Chinese Optics, 2018, 11(4): 610-614. (in Chinese) doi: 10.3788/co.20181104.0610
    [9] LANG F, JOŠT M, BUNDESMANN J, et al. Efficient minority carrier detrapping mediating the radiation hardness of triple-cation perovskite solar cells under proton irradiation[J]. Energy &Environmental Science, 2019, 12(5): 1634-1647.
    [10] KANAYA S, KIM G M, IKEGAMI M, et al. Proton irradiation tolerance of high-efficiency perovskite absorbers for space applications[J]. The Journal of Physical Chemistry Letters, 2019, 10(22): 6990-6995. doi: 10.1021/acs.jpclett.9b02665
    [11] BOLDYREVA A G, AKBULATOV A F, TSAREV S A, et al. γ-Ray-induced degradation in the triple-cation perovskite solar cells[J]. The Journal of Physical Chemistry Letters, 2019, 10(4): 813-818. doi: 10.1021/acs.jpclett.8b03222
    [12] BOLDYREVA A G, FROLOVA L A, ZHIDKOV I S, et al. Unravelling the material composition effects on the gamma ray stability of lead halide perovskite solar cells: MAPbI3 breaks the records[J]. The Journal of Physical Chemistry Letters, 2020, 11(7): 2630-2636. doi: 10.1021/acs.jpclett.0c00581
    [13] 冯远皓, 柯小行, 隋曼龄. 无机双钙钛矿太阳能电池材料Cs2AgBiBr6在电子束辐照下的降解行为研究[J]. 电子显微学报,2020,39(1):1-8.

    FENG Y H, KE X X, SUI M L. Effect of electron irradiation on inorganic double perovskite solar cell material Cs2AgBiBr6[J]. Journal of Chinese Electron Microscopy Society, 2020, 39(1): 1-8. (in Chinese)
    [14] GAO L, TAO K ZH, SUN J L, et al. Gamma-ray radiation stability of mixed-cation lead mixed-halide perovskite single crystals[J]. Advanced Optical Materials, 2022, 10(3): 2102069. doi: 10.1002/adom.202102069
    [15] DANG ZH Y, SHAMSI J, PALAZON F, et al. In situ transmission electron microscopy study of electron beam-induced transformations in colloidal cesium lead halide perovskite nanocrystals[J]. ACS Nano, 2017, 11(2): 2124-2132. doi: 10.1021/acsnano.6b08324
    [16] CHEN X Y, WANG ZH W. Investigating chemical and structural instabilities of lead halide perovskite induced by electron beam irradiation[J]. Micron, 2019, 116: 73-79. doi: 10.1016/j.micron.2018.09.010
    [17] HOVINGTON P, DROUIN D, GAUVIN R. CASINO: A new Monte Carlo code in C language for electron beam interaction—part I: description of the program[J]. Scanning, 1997, 19(1): 1-14.
    [18] KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54(16): 11169-11186. doi: 10.1103/PhysRevB.54.11169
    [19] KHUILI M, FAZOUAN N, EL MAKARIM H A, et al. First principle study of structural, electronic, optical and electrical properties of Ga doped ZnO with GGA and mBJ approximations[J]. Journal of Physics:Conference Series, 2016, 758(1): 012024.
    [20] HONG Y K, PARK D H, PARK S K, et al. Tuning and enhancing photoluminescence of light-emitting polymer nanotubes through electron-beam irradiation[J]. Advanced Functional Materials, 2009, 19(4): 567-572. doi: 10.1002/adfm.200801088
    [21] MELONI S, PALERMO G, ASHARI-ASTANI N, et al. Valence and conduction band tuning in halide perovskites for solar cell applications[J]. Journal of Materials Chemistry A, 2016, 4(41): 15997-16002. doi: 10.1039/C6TA04949D
    [22] WANG SH, MA J Q, LI W C, et al. Temperature-dependent band gap in two-dimensional perovskites: thermal expansion interaction and electron–phonon interaction[J]. The Journal of Physical Chemistry Letters, 2019, 10(10): 2546-2553. doi: 10.1021/acs.jpclett.9b01011
    [23] GLEADOW A J W, DUDDY I R. A natural long-term track annealing experiment for apatite[J]. Nuclear Tracks, 1981, 5(1-2): 169-174. doi: 10.1016/0191-278X(81)90039-1
  • 加载中
图(10)
计量
  • 文章访问数:  389
  • HTML全文浏览量:  266
  • PDF下载量:  210
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-15
  • 修回日期:  2023-04-04
  • 网络出版日期:  2023-07-11

目录

    /

    返回文章
    返回