留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于圆边响应离焦估计的望远物镜自动调焦方法

罗其俊 葛宝臻

罗其俊, 葛宝臻. 基于圆边响应离焦估计的望远物镜自动调焦方法[J]. 中国光学(中英文), 2020, 13(4): 760-769. doi: 10.37188/CO.2019-0247
引用本文: 罗其俊, 葛宝臻. 基于圆边响应离焦估计的望远物镜自动调焦方法[J]. 中国光学(中英文), 2020, 13(4): 760-769. doi: 10.37188/CO.2019-0247
LUO Qi-jun, GE Bao-zhen. An automatic focusing method of a telescope objective lens based on the defocusing estimation of a circular edge response[J]. Chinese Optics, 2020, 13(4): 760-769. doi: 10.37188/CO.2019-0247
Citation: LUO Qi-jun, GE Bao-zhen. An automatic focusing method of a telescope objective lens based on the defocusing estimation of a circular edge response[J]. Chinese Optics, 2020, 13(4): 760-769. doi: 10.37188/CO.2019-0247

基于圆边响应离焦估计的望远物镜自动调焦方法

doi: 10.37188/CO.2019-0247
基金项目: 国家自然基金重点项目(No. 61535008)
详细信息
    作者简介:

    罗其俊(1982—),男,湖北孝感人,博士研究生,讲师,2008年于中国民航大学获得硕士学位,现为中国民航大学电子信息与自动化学院讲师,主要从事机器视觉和智能控制系统方面的研究。E-mail: qjluo@cauc.edu.cn

  • 中图分类号: TP391.4

An automatic focusing method of a telescope objective lens based on the defocusing estimation of a circular edge response

Funds: Supported by Key Program from the National Natural Science Foundation of China (No. 61535008)
More Information
  • 摘要: 本文提出了一种基于圆边响应曲线的离焦估计新算法,实现了调焦参数的标定和望远物镜的自动调焦。建立了圆形边缘的灰度响应与离焦半径的关系模型,设计了圆四周离焦半径的双阈值均值滤波器,实现了模糊图像离焦半径的精确估计,降低了运动模糊和噪声的影响。根据离焦半径与调焦距离的线性关系,采用折线拟合方法,求解正焦调焦距离。然后,利用多个物距和正焦像距,优化求解测距调焦模型参数,实现了成像系统的自动调焦。仿真和实际实验验证了离焦半径估计算法的有效性和鲁棒性。标定后的自动调焦成像系统图像清晰,拍摄距离在43~52 m之间的物理分辨率接近理论值的一半,可分辨线宽优于0.354 mm.

     

  • 图 1  自动调焦成像系统

    Figure 1.  Autofocus imaging system

    图 2  望远物镜光路示意图

    Figure 2.  Light path diagram of telescope objective lens

    图 3  凸透镜成像模型

    Figure 3.  Convex lens imaging model

    图 4  圆边的离焦响应。(a)圆点靶;(b)正焦曲线;(c)离焦图像;(d)离焦曲线

    Figure 4.  Defocusing response of circular edge. (a) Circle image; (b) focus curve; (c) defocus image; (d) defocus curve

    图 5  圆四周离焦估计。(a)模糊图像;(b)离焦半径分布

    Figure 5.  Distribution of defocus radius around the circle. (a) Blurred image; (b)distribution of defocus radius

    图 6  圆边响应曲线提取。(a)提取曲线;(b)标准化曲线

    Figure 6.  Extraction of circular response curve. (a) Extracted curve; (b) standardized curve

    图 7  圆边响应曲线库。(a)不同离焦半径的圆形图像;(b)曲线库。

    Figure 7.  Circular edge defocusing response. (a) Circles with different defocusing radius; (b) curve library.

    图 8  噪声对离焦估计的影响。(a)无噪声;(b)有噪声

    Figure 8.  Influence of noise on defocusing estimation. (a) Without noise; (b) with noise

    图 9  运动模糊对离焦估计的影响

    Figure 9.  Influence of noise on defocusing estimation

    图 10  实验场景

    Figure 10.  Experimental scenario

    图 11  离焦半径估计结果。(a)不同调焦距离的圆点离焦图像;(b)离焦半径分布图

    Figure 11.  Results of defocus radius estimation. (a) Defocused circle images under different focusing distances; (b) defocus radius distribution.

    图 12  图像清晰度评价

    Figure 12.  Image definition evaluation

    图 13  物距偏差的优化曲线

    Figure 13.  Optimized curve of object distance deviation

    图 14  自动调焦成像。(a)正焦图像;(b)分辨率板图像。

    Figure 14.  Autofocus imaging. (a) Focused images; (b) resolution board images.

    图 15  自动调焦图像离焦半径评价

    Figure 15.  Evaluation of defocus radius of autofocus images

  • [1] VALENÇA J, PUENTE I, JÚLIO E, et al. Assessment of cracks on concrete bridges using image processing supported by laser scanning survey[J]. Construction and Building Materials, 2017, 146: 668-678. doi: 10.1016/j.conbuildmat.2017.04.096
    [2] ZHANG Y P, LIU L Y, GONG W T, et al. Autofocus system and evaluation methodologies: a literature review[J]. Sensors and Materials, 2018, 30(5): 1165-1174.
    [3] 梁翠萍, 李清安, 乔彦峰, 等. 简析光学系统自动调焦的方法[J]. 电光与控制,2006,13(6):93-96. doi: 10.3969/j.issn.1671-637X.2006.06.025

    LIANG C P, LI Q A, QIAO Y F, et al. On auto-focusing technology of optical system[J]. Electronics Optics &Control, 2006, 13(6): 93-96. (in Chinese) doi: 10.3969/j.issn.1671-637X.2006.06.025
    [4] 黄垒, 辛立平, 韩旭辉, 等. 广角天文望远镜的自动调焦[J]. 光学 精密工程,2015,23(1):174-183. doi: 10.3788/OPE.20152301.0174

    HUANG L, XIN L P, HAN X H, et al. Auto-focusing of wide-angle astronomical telescope[J]. Optics and Precision Engineering, 2015, 23(1): 174-183. (in Chinese) doi: 10.3788/OPE.20152301.0174
    [5] 李长春, 程国民, 曹永刚. 自动调焦系统速度评估与仿真[J]. 液晶与显示,2019,34(5):515-520. doi: 10.3788/YJYXS20193405.0515

    LI CH CH, CHENG G M, CAO Y G. Evaluation and simulation of auto-focus system speed[J]. Chinese Journal of Liquid Crystals and Displays, 2019, 34(5): 515-520. (in Chinese) doi: 10.3788/YJYXS20193405.0515
    [6] 郭敬滨, 冯华杰, 王龙, 等. 基于梯度能量函数的调焦窗口构建方法[J]. 红外技术,2016,38(3):197-202. doi: 10.11846/j.issn.1001_8891.201603004

    GUO J B, FENG H J, WANG L, et al. Design of focusing window based on energy function of gradient[J]. Infrared Technology, 2016, 38(3): 197-202. (in Chinese) doi: 10.11846/j.issn.1001_8891.201603004
    [7] 朱铮涛, 黎绍发, 陈华平. 基于图像熵的自动聚焦函数研究[J]. 光学 精密工程,2004,12(5):537-542.

    ZHU ZH T, LI SH F, CHEN H P. Research on auto-focused function based on the image entropy[J]. Optics and Precision Engineering, 2004, 12(5): 537-542. (in Chinese)
    [8] 王冠军. 基于图像处理的光电测量设备自动调焦方法研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2016.

    WANG G J. Research on auto-focusing method of photoelectric measurement equipment based on image processing[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2016. (in Chinese)
    [9] 黄艳, 徐巧玉, 叶东, 等. 基于微分图像自相关的自动对焦法[J]. 光学学报,2010,30(12):3435-3440. doi: 10.3788/AOS20103012.3435

    HUANG Y, XU Q Y, YE D, et al. Auto-focus method based on autocorrelation of derivative image[J]. Acta Optica Sinica, 2010, 30(12): 3435-3440. (in Chinese) doi: 10.3788/AOS20103012.3435
    [10] TANG T Y, CHEN Q, FENG SH J, et al. Active depth estimation from defocus using a camera array[J]. Applied Optics, 2018, 57(18): 4960-4967. doi: 10.1364/AO.57.004960
    [11] WANG Y R, FENG H J, XU ZH H, et al. Fast auto-focus scheme based on optical defocus fitting model[J]. Journal of Modern Optics, 2018, 65(7): 858-868. doi: 10.1080/09500340.2017.1411540
    [12] SUN H D, ZHAO ZH J, JIN X S, et al.. Depth from defocus and blur for single image[C]. Proceedings of 2013 Visual Communications and Image Processing, IEEE, 2013.
    [13] 李启辉, 丁亚林, 修吉宏, 等. 基于图像处理的自准直检焦方法[J]. 激光与光电子学进展,2020,57(2):021104.

    LI Q H, DING Y L, XIU J H, et al. Self-collimation inspection and focusing method based on image processing[J]. Laser &Optoelectronics Progress, 2020, 57(2): 021104. (in Chinese)
    [14] 王佳松, 孙海江, 江山, 等. 一种灰度梯度暗通道图像自动调焦方法[J]. 液晶与显示,2018,33(8):669-675. doi: 10.3788/YJYXS20183308.0669

    WANG J S, SUN H J, JIANG SH, et al. Auto-focusing method based on gray gradient and dark channel[J]. Chinese Journal of Liquid Crystals and Displays, 2018, 33(8): 669-675. (in Chinese) doi: 10.3788/YJYXS20183308.0669
    [15] JEON J, YOON I, KIM D, et al. Fully digital auto-focusing system with automatic focusing region selection and point spread function estimation[J]. IEEE Transactions on Consumer Electronics, 2010, 56(3): 1204-1210. doi: 10.1109/TCE.2010.5606247
    [16] 王昊, 张涛, 张振, 等. 单幅图像估计离焦量的航空摄像机自动调焦系统[J]. 液晶与显示,2018,33(8):669-675. doi: 10.3788/YJYXS20163105.0484

    WANG H, ZHANG T, ZHANG ZH, et al. System of aerial camera auto-focus based on defocus estimate by single image[J]. Chinese Journal of Liquid Crystals and Displays, 2018, 33(8): 669-675. (in Chinese) doi: 10.3788/YJYXS20163105.0484
    [17] ZHANG X B, FAN F M, GHEISARI M, et al. A novel auto-focus method for image processing using laser triangulation[J]. IEEE Access, 2019, 7: 64837-64843. doi: 10.1109/ACCESS.2019.2914186
  • 加载中
图(15)
计量
  • 文章访问数:  1067
  • HTML全文浏览量:  428
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-24
  • 修回日期:  2020-02-22
  • 刊出日期:  2020-08-01

目录

    /

    返回文章
    返回