留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高功率连续波掺镱光纤激光器研究进展

党文佳 李哲 李玉婷 卢娜 张蕾 田晓 杨慧慧

党文佳, 李哲, 李玉婷, 卢娜, 张蕾, 田晓, 杨慧慧. 高功率连续波掺镱光纤激光器研究进展[J]. 中国光学, 2020, 13(4): 676-694. doi: 10.37188/CO.2019-0208
引用本文: 党文佳, 李哲, 李玉婷, 卢娜, 张蕾, 田晓, 杨慧慧. 高功率连续波掺镱光纤激光器研究进展[J]. 中国光学, 2020, 13(4): 676-694. doi: 10.37188/CO.2019-0208
DANG Wen-jia, LI Zhe, LI Yu-ting, LU Na, ZHANG Lei, TIAN Xiao, YANG Hui-hui. Recent advances in high-power continuous-wave ytterbium-doped fiber lasers[J]. Chinese Optics, 2020, 13(4): 676-694. doi: 10.37188/CO.2019-0208
Citation: DANG Wen-jia, LI Zhe, LI Yu-ting, LU Na, ZHANG Lei, TIAN Xiao, YANG Hui-hui. Recent advances in high-power continuous-wave ytterbium-doped fiber lasers[J]. Chinese Optics, 2020, 13(4): 676-694. doi: 10.37188/CO.2019-0208

高功率连续波掺镱光纤激光器研究进展

doi: 10.37188/CO.2019-0208
基金项目: 国家自然科学青年基金项目(No.11804264);陕西省自然科学基础研究计划资助项目(No.2019JQ-914);陕西省创新能力支撑计划项目(No.2019KRM093);陕西省教育厅专项科研计划项目(No.17JK0394、No.19JK0429)
详细信息
    作者简介:

    党文佳(1983—),女,博士,讲师,陕西西安人,2015年于西安电子科技大学获得工学博士学位,主要从事光外差探测、光纤激光器及光电子技术方面的研究。E-mail:wenjia_dang@126.com

  • 中图分类号: O436

Recent advances in high-power continuous-wave ytterbium-doped fiber lasers

Funds: Supported by the National Natural Science Foundation of China (No.11804264); Natural Science Basic Research Program of Shaanxi (No.2019JQ-914); Innovation Capability Support Program of Shaanxi (N0.2019KRM093); Scientific Research Program Funded by Shaanxi Provincial Education Department (No.17JK0394; No.19JK0429)
More Information
  • 摘要: 高功率连续波掺镱光纤激光器因具有电光效率高、光束质量好、热管理方便等优点,在工业加工、军事国防、科学研究等领域得到广泛应用,但是高功率条件下的非线性效应和热效应限制了其输出功率的进一步提升。基于此,本文重点分析了受激拉曼散射非线性效应和热致模式不稳定现象的形成机理和抑制方法,为高功率光纤激光系统的设计与集成提供了参考,并详细介绍了2015年以来为克服两种因素的影响所取得的最新研究成果,最后展望了高功率连续波掺镱光纤激光器的发展趋势。
  • 图  1  硅基光纤的拉曼增益谱[20]

    Figure  1.  Raman gain spectrum of silica fibers[20]

    图  2  热致折射率光栅的物理机制[42]

    Figure  2.  Physical mechanism of thermally induced grating[42]

    图  3  5 kW全光纤单模光纤激光器的示意图[51]

    Figure  3.  Schematic diagram of 5 kW all-fiber single mode fiber laser[51]

    图  4  5 kW全光纤激光器输出特性。(a)输出功率与光束质量;(b)输出光谱[51]

    Figure  4.  Output performance of 5 kW single mode all-fiber oscillator. (a) Output power and beam quality; (b) output spectrum of 5 kW fiber laser[51]

    图  5  (a)MOPA结构全光纤激光器结构示意图;(b)全光纤激光振荡器结构示意图[52]

    Figure  5.  (a) Schematical setup of the monolithic fiber amplifier; (b) schematical setup of the fiber oscillator[52]

    图  6  (a)全光纤激光振荡器效率;(b)全光纤激光振荡器光谱随功率变化[52]

    Figure  6.  (a) Efficiency of the fiber oscillator; (b) spectral evolution of the fiber oscillator with increasing power[52]

    图  7  全光纤激光振荡器实验结构[56]

    Figure  7.  Experimental setup of the monolithic fiber laser oscillator[56]

    图  8  (a)输出功率及其斜率效率;(b)输出光谱;(c)5.2 kW的时域信号及其傅立叶光谱[56]

    Figure  8.  (a) Output power and corresponding optical effciency at different pump powers; (b) optical spectrum of the output laser; (c) time domain signal and its Fourier spectrum at an output power of 5.2 kW[56]

    图  9  全光纤激光振荡器实验结构[58]

    Figure  9.  Experimental setup of the monolithic fiber laser oscillator[58]

    图  10  (a)全光纤激光振荡器的斜率效率;(b)不同功率时的输出光谱[58]

    Figure  10.  (a) Slope efficiency of the monolithic fiber laser oscillator; (b) optical spectra at different output powers[58]

    图  11  (a)增益光纤与传输光纤的折射率分布;(b)激光器功率及斜率效率;(c)光束质量[59]

    Figure  11.  (a) Refractive index profiles of a matched passive-active fiber couple; (b) slope efficiency of the laser power; (c) corresponding beam M 2 measurement[59]

    图  12  全光纤激光器和输出特性测试系统示意图[60]

    Figure  12.  Schematic diagram of the all-fiber-integrated fiber laser and the measuring system

    图  13  级联泵浦光纤激光器中抑制SRS的实验结构示意图[62]

    Figure  13.  Schematic of experimental configuration for the suppression of SRS in a tandem pumping fiber amplifier[62]

    图  14  输出光谱随泵浦功率的变化。(a)不使用CTFBG;(b)使用一个CTFBG;(c)使用两个CTFBG[62]

    Figure  14.  Changing spectra of output as the pump power increases (a) without and (b) with a CTFBG and (c) with two CTFBGs inserted[62]

    图  15  (a)在合适的种子功率注入条件下的全光纤放大器斜率效率;(b)全光纤放大器在最大输出功率时的输出光谱[63]

    Figure  15.  (a) Slope efficiency of the all-fiber amplifier with a suitable seed power injected; (b) spectra of the all-fiber amplifier signal beam at the maximum output power[63]

    图  16  用于增益光纤性能测试的MOPA光纤激光系统[65]

    Figure  16.  MOPA configuration for fiber performance test[65]

    图  17  (a)Yb/Ce共掺光纤放大器的输出功率随泵浦功率的变化;(b)增益光纤在4.62 kW时的热像图;(c)激光光谱[65]

    Figure  17.  (a) Output power of the Yb/Ce co-doped fiber power amplifier varying with the increase of pump power; (b) thermal image of the active fiber at 4.62 kW; (c) laser spectrum[65]

    图  18  (3+1)型GT-Wave光纤结构示意图。(a)横截面;(b)侧面视图[66]

    Figure  18.  Schematic diagram of (3+1) GT-Wave fiber. (a) Cross-section; (b) side-view[66]

    图  19  (8+1)型GT-wave光纤激光放大器实验系统[67]

    Figure  19.  Experimental setup of (8+1) GT-Wave fiber amplifier system[67]

    图  20  (8+1)型GT-wave光纤激光放大器输出功率和输出光谱[67]

    Figure  20.  Laser output power and output spectrum of (8+1) GT-Wave fiber[67]

    图  21  6 kW双向泵浦的MOPA结构全光纤激光器结构示意图[69]

    Figure  21.  Schematic of all-fiber 6 kW bidirectional pumping MOPA laser[69]

    图  22  (a)系统输出功率随泵浦功率的变化;(b)光纤放大器的输出出光谱[69]

    Figure  22.  (a) Output power of the system versus the total pumping power; (b) spectrum of output laser from the fiber laser amplifier[69]

    图  23  (a)5 kW和(b)8 kW连续波全光纤激光器结构示意图[70]

    Figure  23.  Schematic configurations of the 5 kW (a) and 8 kW (b) CW monolithic fiber laser[70]

    图  24  (a)5 kW光纤激光器输出功率;(b)5 kW光纤激光器输出光谱;(c)8 kW光纤激光器输出功率;(d)8 kW光纤激光器输出光谱[70]

    Figure  24.  (a) Output power of the 5 kW fiber laser; (b) output spectrum of the 5 kW fiber laser; (c) output power of the 8 kW fiber laser; (d) output spectrum of the 8 kW fiber laser[70]

    图  25  激光实验装置示意图[71]

    Figure  25.  Experimental setup of the laser system[71]

    图  26  (a)激光功率和斜率效率曲线;(b)不同功率光谱测试结果[71]

    Figure  26.  (a) Experimentally measured laser power and slope efficiency; (b) test results of spectra of different output laser powers[71]

    表  1  高功率连续波掺镱光纤激光器研究进展

    Table  1.   Recent advances in high power continuous-wave ytterbium-doped fiber lasers

    Type of fiber laserYearInstitutionPowerActive fiber parameterPumping method
    Monolithic fiber laser oscillator 2016 Fujikura, Japan 2 kW Aeff=400μm2, NA=0.07 915 nm bi-pump
    2016 NUDT, China 2 kW Dcore=21μm, NA=0.066 915 nm and 976 nm co-pump
    2016 NUDT, China 2.5 kW Dcore=20μm, NA=0.065 976 nm bi-pump
    2017 NUDT, China 1.969 kW Dcore=25μm, NA=0.09 976 nm bi-pump
    2017 NUDT, China 3.05 kW Dcore=20μm, NA=0.065 976 nm bi-pump
    2017 Fujikura, Japan 3 kW Aeff=400μm2, NA=0.07 915 nm bi-pump
    2018 NUDT, China 3.96 kW Dcore=25μm, NA=0.065 915 nm bi-pump
    2018 Fujikura, Japan 5 kW Aeff=600μm2 976 nm bi-pump
    2018 Jena, Germany 5 kW Dcore=20μm, NA=0.06 976 nm bi-pump
    2018 NUDT, China 5.2 kW Dcore=25μm, NA=0.065 915 nm bi-pump
    MOPA monolithic fiber laser 2015 NUDT, China 2.14 kW Dcore=30μm, NA=0.06 1018 nm co-pump
    2015 NUDT, China 3.15 kW Dcore=30μm 915 nm co-pump
    2016 HUST, China 3 kW Dcore=25μm, NA=0.06 976 nm bi-pump
    2016 XIOPM, China 3.5 kW Dcore=30μm, NA < 0.062 976 nm co-pump
    2016 Jena, Germany 4.3 kW Dcore=22μm, NA < 0.04 976 nm counter-pump
    2016 CAEP, China 5.07 kW Dcore=30μm, NA=0.066 976 nm bi-pump
    2017 XIOPM, China 4.62 kW Dcore=30μm, NA=0.06 976 nm co-pump
    2017 Tsinghua, China 3.12 kW Dcore=25μm, NA=0.06 976 nm bi-pump
    2017 TJU, Chia 8.05 kW Dcore=50μm, NA=0.06 976 nm co-pump
    2018 Tsinghua, China 6.02 kW Dcore=25μm, NA=0.06 976 nm bi-pump
    2018 CAEP, China 11.23 kW Dcore=30μm, NA=0.064 976 nm bi-pump
    2019 NUDT, China 4.2 kW Dcore=30μm 976 nm co-pump
    2019 SIOM, China 10.14 kW Dcore=30μm, NA=0.06 976 nm bi-pump
    下载: 导出CSV
  • [1] KOESTER C J, SNITZER E. Amplification in a fiber laser[J]. Applied Optics, 1964, 3(10): 1182-1186. doi: 10.1364/AO.3.001182
    [2] DOMINIC V, MACCORMACK S, WAARTS R, et al. 110 W fibre laser[J]. Electronics Letters, 1999, 35(14): 1158-1160. doi: 10.1049/el:19990792
    [3] JEONG Y, SAHU J K, PAYNE D N, et al. Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power[J]. Optics Express, 2004, 12(25): 6088-6092. doi: 10.1364/OPEX.12.006088
    [4] JEONG Y C, BOYLAND A J, SAHU J K, et al. Multi-kilowatt single-mode ytterbium-doped large-core fiber laser[J]. Journal of the Optical Society of Korea, 2009, 13(4): 416-422. doi: 10.3807/JOSK.2009.13.4.416
    [5] WIRTH C, SCHMIDT O, KLINER A, et al. High-power tandem pumped fiber amplifier with an output power of 2.9 kW[J]. Optics Letters, 2011, 36(16): 3061-3063. doi: 10.1364/OL.36.003061
    [6] INJEYAN H, GOODNO G D. High-Power Laser Handbook[M]. New York: McGraw-Hill Professional, 2011.
    [7] YU H B, KLINER D A V, LIAO K H, et al. 1.2-kW single-mode fiber laser based on 100-W high-brightness pump diodes[J]. Proceedings of SPIE, 2012, 8237: 82370G. doi: 10.1117/12.908454
    [8] O'CONNOR M, GAPONTSEV V, FOMIN V, et al.. Power scaling of SM fiber lasers toward 10 kW[C]. Conference on Lasers and Electro-Optics, Optical Society of America, 2009: CThA3.
    [9] SHINER B. The impact of fiber laser technology on the world wide material processing market[C]. CLEO: Applications and Technology, Optical Society of America, 2013: AF2J. 1.
    [10] DAWSON J W, MESSERLY M J, BEACH R J, et al. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power[J]. Optics Express, 2008, 16(17): 13240-13266. doi: 10.1364/OE.16.013240
    [11] OTTO H J, JAUREGUI C, LIMPERT J, et al. Average power limit of fiber-laser systems with nearly diffraction-limited beam quality[J]. Proceedings of SPIE, 2016, 9728: 97280E.
    [12] 王立军, 彭航宇, 张俊. 大功率半导体激光合束进展[J]. 中国光学,2015,8(4):517-534. doi: 10.3788/co.20150804.0517

    WANG L J, PENG H Y, ZHANG J. Advance on high power diode laser coupling[J]. Chinese Optics, 2015, 8(4): 517-534. (in Chinese) doi: 10.3788/co.20150804.0517
    [13] HU M, KE W W, YANG Y F, et al. Low threshold Raman effect in high power narrowband fiber amplifier[J]. Chinese Optics Letters, 2016, 14(1): 011901. doi: 10.3788/COL201614.011901
    [14] HANSEN K R, ALKESKJOLD T T, BROENG J, et al. Theoretical analysis of mode instability in high-power fiber amplifiers[J]. Optics Express, 2013, 21(2): 1944-1971. doi: 10.1364/OE.21.001944
    [15] BROWN D C, HOFFMAN H J. Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers[J]. IEEE Journal of Quantum Electronics, 2001, 37(2): 207-217. doi: 10.1109/3.903070
    [16] 住村和彦, 西浦匡则. 图解光纤激光器入门[M]. 宋鑫, 译. 北京: 机械工业出版社, 2013: 74-84.

    KAZUHIKO SUMIMURA. Graphical Introduction to Fiber Lasers[M]. SONG X, trans. Beijing: China Machine Press, 2013: 74-84. (in Chinese)
    [17] JAUREGUI C, LIMPERT J, TUNNERMANN A. High-power fibre lasers[J]. Nature Photonics, 2013, 7(11): 861-867. doi: 10.1038/nphoton.2013.273
    [18] TER-MIKIRTYCHEV V V. Fundamentals of Fiber Lasers and Fiber Amplifiers[M]. Cham: Springer, 2014.
    [19] 阿戈沃 G. 非线性光纤光学[M]. 贾东方, 葛春风, 王肇颖, 等, 译. 5版. 北京: 电子工业出版社, 2014: 204-206.

    AGRAWAL G. Nonlinear Fiber Optics[M]. JIA D F, GE CH F, WANG ZH Y, et al, trans. 5th ed. Beijing: Publishing House of Electronics Industry, 2014: 204-206. (in Chinese)
    [20] AGRAWAL G P. Nonlinear fiber optics: its history and recent progress[Invited][J]. Journal of the Optical Society of America B, 2011, 28(12): A1-A10. doi: 10.1364/JOSAB.28.0000A1
    [21] RICHARDSON D J, NILSSON J, CLARKSON W A. High power fiber lasers: current status and future perspectives[Invited][J]. Journal of the Optical Society of America B, 2010, 27(11): B63-B92. doi: 10.1364/JOSAB.27.000B63
    [22] 陈吉欣, 隋展, 陈福深, 等. 高功率双包层光纤激光器的受激拉曼散射[J]. 中国激光,2006,33(3):298-302. doi: 10.3321/j.issn:0258-7025.2006.03.003

    CHEN J X, SUI ZH, CHEN F SH, et al. Stimulated Raman scattering in high power double clad fiber laser[J]. Chinese Journal of Lasers, 2006, 33(3): 298-302. (in Chinese) doi: 10.3321/j.issn:0258-7025.2006.03.003
    [23] JAIN D, JUNG Y M, BARUA P, et al. Demonstration of ultra-low NA rare-earth doped step index fiber for applications in high power fiber lasers[J]. Optics Express, 2015, 23(6): 7407-7415. doi: 10.1364/OE.23.007407
    [24] LIMPERT J, LIEM A, REICH M, et al. Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier[J]. Optics Express, 2004, 12(7): 1313-1319. doi: 10.1364/OPEX.12.001313
    [25] GU G C, KONG F T, HAWKINS T W, et al. Impact of fiber outer boundaries on leaky mode losses in leakage channel fibers[J]. Optics Express, 2013, 21(20): 24039-24048. doi: 10.1364/OE.21.024039
    [26] JAIN D, JUNG Y, KIM J, et al. Robust single-mode all-solid multi-trench fiber with large effective mode area[J]. Optics Letters, 2014, 39(17): 5200-5203. doi: 10.1364/OL.39.005200
    [27] 胡姝玲, 张春熹, 高春清, 等. 包层抽运掺镱光纤激光器中受激拉曼散射和受激布里渊散射效应[J]. 中国激光,2008,35(1):6-10. doi: 10.3321/j.issn:0258-7025.2008.01.002

    HU SH L, ZHANG CH X, GAO CH Q, et al. Stimulated Raman scattering and stimulated Brillouin scattering effects in ytterbium doped double clad fiber laser[J]. Chinese Journal of Lasers, 2008, 35(1): 6-10. (in Chinese) doi: 10.3321/j.issn:0258-7025.2008.01.002
    [28] SCHREIBER T, LIEM A, FREIER E, et al. Analysis of stimulated Raman scattering in CW kW fiber oscillators[J]. Proceedings of SPIE, 2014, 8961: 89611T.
    [29] LIU W, MA P F, LV H B, et al. General analysis of SRS-limited high-power fiber lasers and design strategy[J]. Optics Express, 2016, 24(23): 26715-26721. doi: 10.1364/OE.24.026715
    [30] XU H Y, JIANG M, SHI CH, et al. Spectral shaping for suppressing stimulated-Raman-scattering in a fiber laser[J]. Applied Optics, 2017, 56(12): 3538-3542. doi: 10.1364/AO.56.003538
    [31] JANSEN F, NODOP D, JAUREGUI C, et al. Modeling the inhibition of stimulated Raman scattering in passive and active fibers by lumped spectral filters in high power fiber laser systems[J]. Optics Express, 2009, 17(18): 16255-16265. doi: 10.1364/OE.17.016255
    [32] NODOP D, JAUREGUI C, JANSEN F, et al. Suppression of stimulated Raman scattering employing long period gratings in double-clad fiber amplifiers[J]. Optics Letters, 2010, 35(17): 2982-2984. doi: 10.1364/OL.35.002982
    [33] BOCK V, SCHULTZE T, LIEM A, et al.. The influence of different seed sources on Stimulated Raman Scattering in fiber amplifiers[C]. European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference. Optical Society of America, 2017: CJ_4_3.
    [34] WANG W L, LENG J Y, GAO Y, et al. Influence of temporal characteristics on the power scalability of the fiber amplifier[J]. Laser Physics, 2015, 25(3): 035101. doi: 10.1088/1054-660X/25/3/035101
    [35] LIU W, MA P F, LV H B, et al. Investigation of stimulated Raman scattering effect in high-power fiber amplifiers seeded by narrow-band filtered superfluorescent source[J]. Optics Express, 2016, 24(8): 8708-8717. doi: 10.1364/OE.24.008708
    [36] ZERVAS M N. High power ytterbium-doped fiber lasers—fundamentals and applications[J]. International Journal of Modern Physics B, 2014, 28(12): 1442009. doi: 10.1142/S0217979214420090
    [37] BEIER F, HEINZIG M, WALBAUM T, et al.. Determination of thermal load from core temperature measurements in single mode ytterbium-doped fiber amplifiers[C]. Advanced Solid State Lasers, Optical Society of America, 2015: ATh2A. 23.
    [38] 花景田, 陈宝玖, 孙佳石, 等. 稀土掺杂材料的上转换发光[J]. 中国光学与应用光学,2010,3(4):301-309. doi: 10.3969/j.issn.2095-1531.2010.04.001

    HUA J T, CHEN B J, SUN J SH, et al. Introduction to up-conversion luminescence of rare earth doped materials[J]. Chinese Journal of Optics and Applied Optics, 2010, 3(4): 301-309. (in Chinese) doi: 10.3969/j.issn.2095-1531.2010.04.001
    [39] ŠUŠNJAR P, AGREŽ V, PETKOVŠEK R. Photodarkening as a heat source in ytterbium doped fiber amplifiers[J]. Optics Express, 2018, 26(5): 6420-6426. doi: 10.1364/OE.26.006420
    [40] ZHANG H W, ZHOU P, WANG X L, et al.. Fiber fuse effect in high-power double-clad fiber laser[C]. 2013 Conference on Lasers and Electro-Optics Pacific Rim, IEEE, 2013: 1-2.
    [41] DONG L. Thermal lensing in optical fibers[J]. Optics Express, 2016, 24(17): 19841-19852. doi: 10.1364/OE.24.019841
    [42] JAUREGUI C, EIDAM T, OTTO H J, et al. Physical origin of mode instabilities in high-power fiber laser systems[J]. Optics Express, 2012, 20(12): 12912-12925. doi: 10.1364/OE.20.012912
    [43] TAO R M, MA P F, WANG X L, et al. Study of wavelength dependence of mode instability based on a semi-analytical model[J]. IEEE Journal of Quantum Electronics, 2015, 51(8): 1600106.
    [44] CODEMARD C A, SAHU J K, NILSSON J. Tandem cladding-pumping for control of excess gain in ytterbium-doped fiber amplifiers[J]. IEEE Journal of Quantum Electronics, 2010, 46(12): 1860-1869. doi: 10.1109/JQE.2010.2076408
    [45] SHI W, FANG Q, ZHU X SH, et al. Fiber lasers and their applications[Invited][J]. Applied Optics, 2014, 53(28): 6554-6568. doi: 10.1364/AO.53.006554
    [46] 张雪霞, 葛廷武, 丁星, 等. 分布式抽运连续光纤激光器研究[J]. 发光学报,2016,37(9):1071-1075. doi: 10.3788/fgxb20163709.1071

    ZHANG X X, GE T W, DING X, et al. Study of continuous fiber laser with distributed pump structure[J]. Chinese Journal of Luminescence, 2016, 37(9): 1071-1075. (in Chinese) doi: 10.3788/fgxb20163709.1071
    [47] LIMPERT J, STUTZKI F, JANSEN F, et al. Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation[J]. Light:Science &Applications, 2012, 1(4): e8.
    [48] MA X Q, ZHU CH, HU I N, et al. Single-mode chirally-coupled-core fibers with larger than 50 μm diameter cores[J]. Optics Express, 2014, 22(8): 9206-9219. doi: 10.1364/OE.22.009206
    [49] MASHIKO Y, NGUYEN H K, KASHIWAGI M, et al. 2 kW single-mode fiber laser with 20-m long delivery fiber and high SRS suppression[J]. Proceedings of SPIE, 2016, 9728: 972805. doi: 10.1117/12.2212049
    [50] IKOMA S, NGUYEN H K, KASHIWAGI M, et al. 3 kW single stage all-fiber Yb-doped single-mode fiber laser for highly reflective and highly thermal conductive materials processing[J]. Proceedings of SPIE, 2017, 10083: 100830Y.
    [51] SHIMA K, IKOMA S, UCHIYAMA K, et al. 5-kW single stage all-fiber Yb-doped single-mode fiber laser for materials processing[J]. Proceedings of SPIE, 2018, 10512: 105120C.
    [52] MÖLLER F, KRÄMER R G, MATZDORF C, et al.. Comparison between bidirectional pumped Yb-doped all-fiber single-mode amplifier and oscillator setup up to a power level of 5 kW[C]. Advanced Solid State Lasers, Optical Society of America, 2018: AM2A. 3.
    [53] YANG B L, ZHANG H W, WANG X L, et al. Mitigating transverse mode instability in a single-end pumped all-fiber laser oscillator with a scaling power of up to 2 kW[J]. Journal of Optics, 2016, 18(10): 105803. doi: 10.1088/2040-8978/18/10/105803
    [54] YANG B L, ZHANG H W, SHI CH, et al. Mitigating transverse mode instability in all-fiber laser oscillator and scaling power up to 2.5 kW employing bidirectional-pump scheme[J]. Optics Express, 2016, 24(24): 27828-27835. doi: 10.1364/OE.24.027828
    [55] YANG B L, ZHANG H W, SHI CH, et al. 3.05 kW monolithic fiber laser oscillator with simultaneous optimizations of stimulated Raman scattering and transverse mode instability[J]. Journal of Optics, 2018, 20(2): 025802. doi: 10.1088/2040-8986/aa9ec0
    [56] YANG B L, SHI CH, ZHANG H W, et al. Monolithic fiber laser oscillator with record high power[J]. Laser Physics Letters, 2018, 15(7): 075106. doi: 10.1088/1612-202X/aac19f
    [57] YING H Y, YU Y, CAO J Q, et al. 2 kW pump-light-stripper-free distributed side-coupled cladding-pumped fiber oscillator[J]. Laser Physics Letters, 2017, 14(6): 065102. doi: 10.1088/1612-202X/aa6dc8
    [58] CHEN H, CAO J Q, HUANG ZH H, et al.. 4-kilowatt all-fiber distributed side-pumped oscillators[C]. Advanced Solid State Lasers, Optical Society of America, 2018: AM6A. 18.
    [59] KUHN S, HEIN S, HUPEL C, et al.. Towards monolithic single-mode Yb-doped fiber amplifiers with > 4 kW average power[C]. Advanced Solid State Lasers, Optical Society of America, 2016: ATu4A. 2.
    [60] YU H L, ZHANG H W, LV H B, et al. 3.15 kW direct diode-pumped near diffraction-limited all-fiber-integrated fiber laser[J]. Applied Optics, 2015, 54(14): 4556-4560. doi: 10.1364/AO.54.004556
    [61] XIAO H, LENG J Y, ZHANG H W, et al. High-power 1018 nm ytterbium-doped fiber laser and its application in tandem pump[J]. Applied Optics, 2015, 54(27): 8166-8169. doi: 10.1364/AO.54.008166
    [62] WANG M, WANG Z F, LIU L, et al. Effective suppression of stimulated Raman scattering in half 10 kW tandem pumping fiber lasers using chirped and tilted fiber Bragg gratings[J]. Photonics Research, 2019, 7(2): 167-171. doi: 10.1364/PRJ.7.000167
    [63] WANG J M, YAN D P, XIONG S S, et al. High power all-fiber amplifier with different seed power injection[J]. Optics Express, 2016, 24(13): 14463-14469. doi: 10.1364/OE.24.014463
    [64] HOU CH Q, ZHU Y G, ZHENG J K, et al. Ytterbium-doped double-cladding fiber with 3.5 kW output power, fabricated by chelate gas phase deposition technique[J]. Optical Materials Express, 2016, 6(4): 979-985. doi: 10.1364/OME.6.000979
    [65] ZHENG J K, ZHAO W, ZHAO B Y, et al. 4.62 kW excellent beam quality laser output with a low-loss Yb/Ce co-doped fiber fabricated by chelate gas phase deposition technique[J]. Optical Materials Express, 2017, 7(4): 1259-1266. doi: 10.1364/OME.7.001259
    [66] ZHAN H, LIU Q Y, WANG Y Y, et al. 5 kW GTWave fiber amplifier directly pumped by commercial 976 nm laser diodes[J]. Optics Express, 2016, 24(24): 27087-27095. doi: 10.1364/OE.24.027087
    [67] 林傲祥, 湛欢, 彭昆, 等. 国产复合功能光纤实现万瓦激光输出[J]. 强激光与粒子束,2018,30(6):060101. doi: 10.11884/HPLPB201830.180110

    LIN A X, ZHAN H, PENG K, et al. 10 kW-level pump-gain integrated functional laser fiber[J]. High Power Laser and Particle Beams, 2018, 30(6): 060101. (in Chinese) doi: 10.11884/HPLPB201830.180110
    [68] YAN P, HUANG Y SH, SUN J Y, et al. 3.1 kW monolithic MOPA configuration fibre laser bidirectionally pumped by non-wavelength-stabilized laser diodes[J]. Laser Physics Letters, 2017, 14(8): 080001. doi: 10.1088/1612-202X/aa7c92
    [69] XIAO Q R, LI D, HUANG Y SH, et al. Directly diode and bi-directional pumping 6 kW continuous-wave all-fibre laser[J]. Laser Physics, 2018, 28(12): 125107. doi: 10.1088/1555-6611/aae4a1
    [70] FANG Q, LI J H, SHI W, et al. 5 kW near-diffraction-limited and 8 kW high-brightness monolithic continuous wave fiber lasers directly pumped by laser diodes[J]. IEEE Photonics Journal, 2017, 9(5): 1506107.
    [71] 陈晓龙, 楼风光, 何宇, 等. 高效率全国产化10 kW光纤激光器[J]. 光学学报,2019,39(3):0336001. doi: 10.3788/AOS201939.0336001

    CHEN X L, LOU F G, HE Y, et al. Home-made 10 kW fiber laser with high efficiency[J]. Acta Optica Sinica, 2019, 39(3): 0336001. (in Chinese) doi: 10.3788/AOS201939.0336001
    [72] OTTO H J, MODSCHING N, JAUREGUI C, et al. Impact of photodarkening on the mode instability threshold[J]. Optics Express, 2015, 23(12): 15265-15277. doi: 10.1364/OE.23.015265
    [73] 王小林, 陶汝茂, 杨保来, 等. 掺镱全光纤激光振荡器横向模式不稳定与受激拉曼散射的关系[J]. 中国激光,2018,45(8):0801008. doi: 10.3788/CJL201845.0801008

    WANG X L, TAO R M, YANG B L, et al. Relationship between transverse mode instability and stimulated Raman scattering in ytterbium doped all-fiber laser oscillator[J]. Chinese Journal of Lasers, 2018, 45(8): 0801008. (in Chinese) doi: 10.3788/CJL201845.0801008
    [74] HONEA E, AFZAL R S, SAVAGE-LEUCHS M, et al. Advances in fiber laser spectral beam combining for power scaling[J]. Proceedings of SPIE, 2016, 9730: 97300Y.
    [75] SHCHERBAKOV E A, FOMIN V V, ABRAMOV A A, et al.. Industrial grade 100 kW power CW fiber laser[C]. Advanced Solid State Lasers, Optical Society of America, 2013: ATh4A. 2.
    [76] 郑也, 杨依枫, 赵翔, 等. 高功率光纤激光光谱合成技术的研究进展[J]. 中国激光,2017,44(2):0201002. doi: 10.3788/CJL201744.0201002

    ZHENG Y, YANG Y F, ZHAO X, et al. Research progress on spectral beam combining technology of high-power fiber lasers[J]. Chinese Journal of Lasers, 2017, 44(2): 0201002. (in Chinese) doi: 10.3788/CJL201744.0201002
  • 加载中
图(26) / 表(1)
计量
  • 文章访问数:  802
  • HTML全文浏览量:  353
  • PDF下载量:  102
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-24
  • 修回日期:  2019-11-21
  • 刊出日期:  2020-08-01

目录

    /

    返回文章
    返回