Multi-Fano resonances sensing based on a non-through metal-insulator-metal waveguide coupling D-shaped cavity
doi: 10.37188/CO.EN-2025-0017
-
摘要:
本文设计了一种由两个一端封堵的金属-绝缘体-金属(MIM)波导与一个的D形腔耦合组成表等离激元波导结构。使用有限元方法(FEM)模拟了该结构的传输特性、磁场分布以及折射率传感特性。在透射光谱中可以明显观察到多Fano共振现象。这些Fano共振是由于D形谐振腔的产生的共振离散态与一端封堵的MIM波导产生的连续状态之间相互耦合产生。通过系统地调整结构参数,研究了其对Fano共振调制的影响。此外,通过改变MIM波导中绝缘层的折射率研究了基于Fano共振折射率传感特性。结果表明,该结构实现的最大折射率灵敏度和品质因子(FOM)分别为
1155 RIU/nm和40。这些研究对高灵敏度光子器件、微型传感器、未来新型片上传感的设计和研究提供了新的途径。-
关键词:
- 表面等离激元 /
- 金属-绝缘体-金属波导 /
- D形谐振腔 /
- 双Fano共振 /
- 折射率传感器
Abstract:A plasmonics waveguide structure that consist of a non-through metal–insulator–metal (MIM) waveguide coupled with a D-shaped cavity was designed. And the transmission properties, magnetic field distribution, and refractive index sensing functionality were simulated using the finite element method (FEM). A multi-Fano resonance phenomenon was clearly observable in the transmission spectra. The Fano resonances observed in the proposed structure arise from the interaction between the discrete states of the D-shaped resonant cavity and the continuum state of the non-through MIM waveguide. The influence of structural parameters on Fano resonance modulation was investigated through systematic parameter adjustments. Additionally, the refractive index sensing properties, based on the Fano resonance, were investigated by varying the refractive index of the MIM waveguide's insulator layer. A maximum sensitivity and FOM of
1155 RIU/nm and 40 were achieved, respectively. This research opens up new possibilities for designing and exploring high-sensitivity photonic devices, micro-sensors, and innovative on-chip sensing architectures for future applications. -
-
[1] ZAYATS A V, SMOLYANINOV I I. Near-field photonics: surface plasmon polaritons and localized surface plasmons[J]. Journal of Optics A: Pure and Applied Optics, 2003, 5(4): S16-S50. [2] ZAYATS A V, SMOLYANINOV I I, MARADUDIN A A. Nano-optics of surface plasmon polaritons[J]. Physics Reports, 2005, 408(3-4): 131-314. [3] LIU J, LIU J, WANG Y T, et al. Resonant properties of sub-wavelength metallic gratings[J]. Chinese Optics, 2011, 4(4): 363-368. (in Chinese). [4] HE Q Y, LI G H, PAN D, et al. Research progress of surface plasmon polariton metal-insulator-semiconductor waveguide lasers[J]. Chinese Journal of Luminescence, 2022, 43(12): 1839-1854. (in Chinese). [5] HAN ZH H, BOZHEVOLNYI S I. Radiation guiding with surface plasmon polaritons[J]. Reports on Progress in Physics, 2013, 76(1): 016402. [6] ZHU J, LI ZH Q. Characteristics of transmission and attenuation of surface plasmon polaritons in Otto structure loaded MIM wave guide[J]. Chinese Journal of Luminescence, 2013, 34(11): 1533-1537. (in Chinese). [7] LI M, CUSHING S K, WU N Q. Plasmon-enhanced optical sensors: a review[J]. Analyst, 2015, 140(2): 386-406. [8] LEI J G, LIU T H, LIN J Q, et al. New applications of surface plasmon polaritons[J]. Chinese Journal of Optics and Applied Optics, 2010, 3(5): 432-439. (in Chinese). [9] YE L F, CHEN Y, WANG ZH Y, et al. Compact spoof surface plasmon polariton waveguides and notch filters based on meander-strip units[J]. IEEE Photonics Technology Letters, 2021, 33(3): 135-138. [10] KAZANSKIY N L, KHONINA S N, BUTT M A. Plasmonic sensors based on metal-insulator-metal waveguides for refractive index sensing applications: a brief review[J]. Physica E: Low-dimensional Systems and Nanostructures, 2020, 117: 113798. [11] BUTT M A. Review of innovative cavity designs in metal–insulator-metal waveguide-based plasmonic sensors[J]. Plasmonics, 2024, 20(6): 4257-4276. doi: 10.1007/s11468-024-02562-4 [12] CHEN J J, GAN F Y, WANG Y J, et al. Plasmonic sensing and modulation based on fano resonances[J]. Advanced Optical Materials, 2018, 6(9): 1701152. [13] KONG Y, CAO J J, QIAN W C, et al. Multiple Fano resonance based optical refractive index sensor composed of micro-cavity and micro-structure[J]. IEEE Photonics Journal, 2018, 10(6): 6804410. [14] SHE S C, SHEN S M, WANG Z Y, et al. Fano-resonance-based refractive index sensor with ultra-high sensitivity[J]. Results in Physics, 2021, 25: 104327. [15] XU B, DAI Y M, ZHAO L X, et al. Temperature-tunable Fano resonance induced by strong coupling between Weyl fermions and phonons in TaAs[J]. Nature Communications, 2017, 8: 14933. [16] GUO H Y, FANG W J, PANG J L, et al. Multiple Fano resonances based on all-dielectric metastructure for refractive index sensing[J]. Infrared Physics & Technology, 2024, 139: 105284. [17] ROHIMAH S, TIAN H, WANG J F, et al. Fano resonance in the plasmonic structure of MIM waveguide with r-shaped resonator for refractive index sensor[J]. Plasmonics, 2022, 17(4): 1681-1689. [18] ZHANG ZH D, ZHANG H N, LIANG J, et al. Double Fano resonance and refractive index sensors based on parallel-arranged Au nanorod dimer metasurface arrays[J]. Chinese Optics, 2023, 16(4): 961-971. (in Chinese). doi: 10.37188/CO.EN-2023-0008 [19] ZHU J, WU CH S. Optical refractive index sensor with Fano resonance based on original MIM waveguide structure[J]. Results in Physics, 2021, 21: 103858. [20] RAHAD R, HOSSAIN N, HOSSAIN A. Enhanced alcohol detection using surface plasmon polariton dependent MIM plasmonic sensor[J]. Plasmonics, 2025, 20: 1331-1340. doi: 10.1007/s11468-024-02360-y [21] BUTT M A, KAZANSKIY N L, KHONINA S N. Tapered waveguide mode converters for metal-insulator-metal waveguide plasmonic sensors[J]. Measurement, 2023, 211: 112601. [22] BUTT M A, PIRAMIDOWICZ R. Orthogonal mode couplers for plasmonic chip based on metal–insulator–metal waveguide for temperature sensing application[J]. Scientific reports, 2024, 14(1): 3474. [23] BUTT M A. Plasmonic sensors based on a metal–insulator–metal waveguide—what do we know so far[J]. Sensors, 2024, 24(22): 7158. [24] ZAYATS A V, SMOLYANINOV I I, MARADUDIN A A. Nano-optics of surface plasmon polaritons[J]. Physics Reports, 2005, 408(3-4): 131-314. (查阅网上资料, 本条文献与第2条文献重复, 请核对). [25] GAI H F, WANG J, TIAN Q. Modified Debye model parameters of metals applicable for broadband calculations[J]. Applied Optics, 2007, 46(12): 2229-2233. [26] ZHANG Z D, LUO L, XUE C Y, et al. Fano resonance based on metal-insulator-metal waveguide-coupled double rectangular cavities for plasmonic nanosensors[J]. Sensors, 2016, 16(5): 642. [27] ZHANG ZH Y, WANG J D, ZHAO Y N, et al. Numerical investigation of a branch-shaped filter based on metal-insulator-metal waveguide[J]. Plasmonics, 2011, 6(4): 773-778. -