留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design of broadband achromatic far-infrared metalens based on chalcogenide glass using parameterized topology optimization

ZHOU Yun-fei ZOU Lin-er CHENG Yang-bing SHEN Yun

周云飞, 邹林儿, 程杨炳, 沈云. 基于硫系玻璃的宽带消色差远红外超透镜参数化拓扑优化设计[J]. 中国光学(中英文). doi: 10.37188/CO.EN-2025-0003
引用本文: 周云飞, 邹林儿, 程杨炳, 沈云. 基于硫系玻璃的宽带消色差远红外超透镜参数化拓扑优化设计[J]. 中国光学(中英文). doi: 10.37188/CO.EN-2025-0003
ZHOU Yun-fei, ZOU Lin-er, CHENG Yang-bing, SHEN Yun. Design of broadband achromatic far-infrared metalens based on chalcogenide glass using parameterized topology optimization[J]. Chinese Optics. doi: 10.37188/CO.EN-2025-0003
Citation: ZHOU Yun-fei, ZOU Lin-er, CHENG Yang-bing, SHEN Yun. Design of broadband achromatic far-infrared metalens based on chalcogenide glass using parameterized topology optimization[J]. Chinese Optics. doi: 10.37188/CO.EN-2025-0003

基于硫系玻璃的宽带消色差远红外超透镜参数化拓扑优化设计

详细信息
  • 中图分类号: O439

Design of broadband achromatic far-infrared metalens based on chalcogenide glass using parameterized topology optimization

doi: 10.37188/CO.EN-2025-0003
Funds: Supported by the National Natural Science Foundation of China (NSFC) (No. 62165008) and the Natural Science Foundation of Jiangxi Province,China (No. 20212ACB201007)
More Information
    Author Bio:

    ZHOU Yun-fei (2000—), male, born in Shangrao, Jiangxi Province, master student, majoring in optoelectronic Information Engineering, Nanchang University, mainly engaged in optical design research. E-mail: 1150642941@qq.com

    ZOU Lin-er (1971—), male, born in Jian, Jiangxi Province, Doctor, professor, doctoral supervisor, mainly engaged in integrated optical technology and device, metassurficial optical design. E-mail: linerzou@ncu.edu.cn

    Corresponding author: linerzou@ncu.edu.cn
  • 摘要:

    超透镜技术在小型化、集成化红外成像系统中有着广泛的应用。然而,由于单元结构的较高色散,超透镜经常出现色差,使得宽带消色差红外成像难以实现。该文章构建了基于硫系玻璃的6种不同单元结构,并对其相位色散参数进行分析,建立数据库。在此基础上,采用色差补偿和参数化伴随拓扑优化的方法,在远红外波段将这6种单元结构排列组合,设计出数值孔径为0.5的宽带消色差超透镜。仿真结果表明,该超透镜在9~11µm的工作波长范围内实现了近衍射极限聚焦,具有良好的消色差性能,全波长具有为54%~58%的平坦的聚焦效率。

     

  • 图 1  (a) 消色差超透镜示意图;(b) 消色差超透镜的相位轮廓示意图

    Figure 1.  (a) Schematic for achromatic metalens; (b) Schematic for Phase profile of an achromatic metalens

    图 2  六种不同单元结构的侧面和顶部视图

    Figure 2.  The side and top views of the six different unit structures

    图 3  (a) 单元结构相位模拟结果;(b) 实心方柱结构相位-色散参数分布,其中红叉和蓝点分别代表实际方柱结构和理论结构的相位-色散参数;(c) 所有单元结构的相位-色散参数数据库;(d) 每个位置上最接近理论结构的初始结构的相位-色散参数分布

    Figure 3.  (a) Phase simulation results of unit structure; (b) Distributions of the phase-dispersion parameters for the solid square column structure, where red cross and blue point represent the phase-dispersion parameters of an actual square column structure and the theoretical structure, respectively; (c) Database of the phase-dispersion parameters for all unit structures; (d) Distributions of the phase-dispersion parameters of the initial structure closest to theoretical structures for each position

    图 4  参数化伴随拓扑优化的工作流程图

    Figure 4.  The workflow of the parameterized adjoint topology optimization process

    图 5  (a) 前向模拟光路;(b) 伴随模拟光路

    Figure 5.  (a) Forward simulation light path; (b) Adjoint simulation light path

    图 6  (a) 单元结构变化示意图;(b) 迭代步长为0和40次后超透镜的归一化相位分布;(c) 不同入射波长对应的聚焦效率随优化迭代步长的变化

    Figure 6.  (a) Schematic diagram of the unit structures changes; (b) The normalized phase distribution of the metalens after the iteration step of 0 and 40; (c) Variation of focusing efficiency corresponding to different incident wavelengths concerning the step of optimization iterations

    图 7  (a) x-z平面归一化光强分布,白色虚线表示180 µm位置;(b) 在x-y平面上焦点处的归一化光强分布

    Figure 7.  (a) Distribution of normalized light intensity on the x-z plane, with the white dashed line indicating the position at 180 µm; (b) Distribution of normalized light intensity at the focal point on the x-y plane

    图 8  (a) 不同波长对应的焦距;(b) 不同波长对应的FWHM,以及满足衍射极限的相应FWHM

    Figure 8.  (a) Focal lengths at different wavelengths; (b) FWHM values at different wavelengths, and corresponding FWHM values that meet the diffraction limit

    图 9  超透镜在不同波长下的聚焦效率

    Figure 9.  Focusing efficiency of the metalens at different wavelengths

    图 10  (a) 原始图像;(b) 在9~11µm波长范围的模拟图像

    Figure 10.  (a) The original image; (b) The simulated image in the wavelength range of 9-11 µm

    表  1  Summary of performances for broadband achromatic metalens

    Table  1.   Summary of performances for broadband achromatic metalens

    NAOperating wavelength (µm)Diameter (µm)Average focusing efficiencyPolarizationRef.
    0.60.45−0.75645%Insensitive[11]
    0.60.632065%Circular[10]
    0.110.6211245%Circular[24]
    0.383−53046.5%Insensitive[8]
    0.560.6410.250%Circular[25]
    0.8215.55072%Circular[26]
    0.548.6−11.4191.438.2%Circular[27]
    0.59−1120456% (54−58%)InsensitiveThis paper
    下载: 导出CSV
  • [1] AHMAD M, LI J N, ZHOU R Y, et al. Ultrathin ring-shaped metasurface for a multiview 3D display[J]. Applied Optics, 2024, 63(19): 5217-5222.
    [2] WU ZH X, ZOU Y Y, DENG H, et al. Broadband devices for a polarization converter based on optical metasurfaces[J]. Applied Optics, 2022, 61(24): 7119-7124. doi: 10.1364/AO.464801
    [3] OU K, YU F L, LI G H, et al. Mid-infrared polarization-controlled broadband achromatic metadevice[J]. Science Advances, 2020, 6(37): eabc0711.
    [4] CHEN J, YU F L, LIU X S, et al. Polychromatic full-polarization control in mid-infrared light[J]. Light: Science & Applications, 2023, 12(1): 105.
    [5] WANG J X, YU F L, CHEN J, et al. Continuous‐spectrum–polarization recombinant optical encryption with a dielectric metasurface[J]. Advanced Materials, 2023, 35(41): 2304161.
    [6] LI Y P, LUO J CH, JI R N, et al. Long wavelength infrared metalens fabricated by photolithography[J]. Journal of Infrared and Millimeter Waves, 2024, 43(5): 603-608. (in Chinese).
    [7] KHORASANINEJAD M, SHI Z, ZHU A Y, et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion[J]. Nano Letters, 2017, 17(3): 1819-1824. doi: 10.1021/acs.nanolett.6b05137
    [8] WANG SH M, WU P C, SU V C, et al. Broadband achromatic optical metasurface devices[J]. Nature Communications, 2017, 8(1): 187.
    [9] XIE Y, ZHANG J Q, WANG SH Y, et al. Broadband achromatic polarization-insensitive metalens in the mid-wave infrared range[J]. Applied Optics, 2022, 61(14): 4106-4112.
    [10] SANG D, XU M F, PU M B, et al. Toward high‐efficiency ultrahigh numerical aperture freeform metalens: from vector diffraction theory to topology optimization[J]. Laser & Photonics Reviews, 2022, 16(10): 2200265.
    [11] MANSOUREE M, MCCLUNG A, SAMUDRALA S, et al. Large-scale parametrized metasurface design using adjoint optimization[J]. ACS Photonics, 2021, 8(2): 455-463. doi: 10.1021/acsphotonics.0c01058
    [12] PHAN T, SELL D, WANG E W, et al. High-efficiency, large-area, topology-optimized metasurfaces[J]. Light: Science & Applications, 2019, 8: 48.
    [13] CHRISTIANSEN R E, SIGMUND O. Inverse design in photonics by topology optimization: tutorial[J]. Journal of the Optical Society of America B, 2021, 38(2): 496-509.
    [14] LIN Z, LIU V, PESTOURIE R, et al. Topology optimization of freeform large-area metasurfaces[J]. Optics Express, 2019, 27(11): 15765-15775.
    [15] CHEN F T, CRAIGHEAD H G. Diffractive lens fabricated with mostly zeroth-order gratings[J]. Optics Letters, 1996, 21(3): 177-179.
    [16] LALANNE P, ASTILEAN S, CHAVEL P, et al. Blazed binary subwavelength gratings with efficiencies larger than those of conventional échelette gratings[J]. Optics Letters, 1998, 23(14): 1081-1083. doi: 10.1364/OL.23.001081
    [17] ARBABI A, HORIE Y, BALL A J, et al. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays[J]. Nature Communications, 2015, 6: 7069. doi: 10.1038/ncomms8069
    [18] YU N F, GENEVET P, KATS M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337. doi: 10.1126/science.1210713
    [19] BAYATI E, ZHAN A L, COLBURN S, et al. Role of refractive index in metalens performance[J]. Applied Optics, 2019, 58(6): 1460-1466. doi: 10.1364/AO.58.001460
    [20] YANG J J, FAN J A. Analysis of material selection on dielectric metasurface performance[J]. Optics Express, 2017, 25(20): 23899-23909. doi: 10.1364/OE.25.023899
    [21] JENSEN J S, SIGMUND O, REVIEWS P. Topology optimization for nano‐photonics[J]. Laser & Photonics Reviews, 2011, 5(2): 308-321.
    [22] SELL D, YANG J J, DOSHAY S, et al. Large-angle, multifunctional metagratings based on freeform multimode geometries[J]. Nano Letters, 2017, 17(6): 3752-3757. doi: 10.1021/acs.nanolett.7b01082
    [23] LIAO W P, LIU H L, LIN Y F, et al. I-line photolithographic metalenses enabled by distributed optical proximity correction with a deep-learning model[J]. Optics Express, 2022, 30(12): 21184-21194. doi: 10.1364/OE.456469
    [24] ZHAN A L, COLBURN S, TRIVEDI R, et al. Low-contrast dielectric metasurface optics[J]. ACS Photonics, 2016, 3(2): 209-214. doi: 10.1021/acsphotonics.5b00660
    [25] ELSAWY M M R, GOURDIN A, BINOIS M, et al. Multiobjective statistical learning optimization of RGB metalens[J]. ACS Photonics, 2021, 8(8): 2498-2508. doi: 10.1021/acsphotonics.1c00753
    [26] WEI H M, HU W C, PANG F F. Inverse design of high-performance near-infrared polymer metalens[J]. Acta Optica Sinica, 2024, 44(8): 0822002. (in Chinese). doi: 10.3788/AOS231859
    [27] WU H, YI Y T, ZHANG N, et al. Inverse design broadband achromatic metasurfaces for longwave infrared[J]. Optical Materials, 2024, 148: 114923. doi: 10.1016/j.optmat.2024.114923
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  105
  • HTML全文浏览量:  22
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-15
  • 录用日期:  2025-04-09
  • 网络出版日期:  2025-05-21

目录

    /

    返回文章
    返回