-
摘要:
为满足表面等离激元纳米结构的微区域光学响应研究需求,本文研制了一套基于同轴转臂的微区域角分辨光谱测量系统。该系统设计了一种基于有限共轭构型的微区域远程激发与收集光路模型,实现了以32 μm直径的微区域光斑入射;搭建了基于同轴转臂的角分辨机械系统,实现了6.9° 至90° 的大范围定向角度激发。性能测试表明,系统稳定性高,最小角度分辨率达0.12°。通过对一维光栅和二维周期纳米结构的反射光谱采集实验,进一步验证了系统的可靠性,证明了微区域光斑所带来的优势,为微纳结构的角分辨光谱表征提供了有效的技术手段。
Abstract:To meet the research requirements of the optical response of micro-area in surface plasmon nanostructures, this paper has develops a micro-area angle-resolved spectroscopy measurement system based on a coaxial rotating arm. The system adopts a micro-area remote excitation and collection optical path model based on a finite conjugate configuration, enabling an incident micro-area spot with a diameter of 32 μm. In addition, an angle-resolved mechanical system based on a coaxial rotating arm is constructed, realizing large-range directional angular excitation from 6.9° to 90°. Performance tests show that the system exhibits high stability, with a minimum angular resolution of 0.12°. Through the reflection spectrum collection experiments on one-dimensional gratings and two-dimensional periodic nanostructures, the reliability of the system is further verified. The results demonstrate the advantages of the micro-area spot and provide an effective technical means for the angle-resolved spectroscopy characterization of micro and nanostructures.
-
图 9 一维光栅实验:(a)银表面一维光栅角分辨光谱图;(b)银表面一维光栅角分辨强度图;(c)银表面一维光栅理论数值模拟结果;(d)金表面一维光栅角分辨光谱图;(e)金表面一维光栅角分辨强度图;(f)金表面一维光栅理论数值模拟结果
Figure 9. One-dimensional grating experiments: (a) Angle-resolved spectra on silver; (b) Angle-resolved intensity on silver; (c) Theoretical numerical simulation results on silver; (d) Angle-resolved spectra on gold; (e) Angle-resolved intensity on gold; (f) Theoretical numerical simulation results on gold
表 1 光学系统型号表
Table 1. Optical system specifications
Items Designation Light source HDL-II Fiber for excitation 50 μm silica fiber Fiber for collection 1000 μm silica fiberCollimator F239SMA-A Polarizer HC12N Achromatic doublet lens 63-718 Objective lens InfiniStix Spectrometer Andor Shamrock 303i 表 2 点列图数据
Table 2. Spot diagram data
视场 RMS Radius/μm GEO Radius/μm 0° 13.556 29.153 0.707° 13.566 30.743 1° 13.578 31.582 -
[1] ITOH T, PROCHÁZKA M, DONG ZH CH, et al. Toward a new era of SERS and TERS at the nanometer scale: from fundamentals to innovative applications[J]. Chemical Reviews, 2023, 123(4): 1552-1634. doi: 10.1021/acs.chemrev.2c00316 [2] MINAMIMOTO H, MURAKOSHI K. Surface-enhanced Raman scattering as a probe for exotic electronic excitations induced by localized surface plasmons[J]. Current Opinion in Electrochemistry, 2020, 22: 186-194. doi: 10.1016/j.coelec.2020.07.005 [3] 葛梅兰, 王与烨, 李海滨, 等. 拉曼光谱技术在脑胶质瘤检测中的应用研究[J]. 中国光学(中英文), 2024, 17(5): 995-1013. doi: 10.37188/CO.2024-0003GE M L, WANG Y Y, LI H B, et al. Application of Raman spectroscopy in the detection of brain glioma[J]. Chinese Optics, 2024, 17(5): 995-1013. (in Chinese). doi: 10.37188/CO.2024-0003 [4] 陈韶云, 张行颖, 刘奔, 等. 表面增强拉曼光谱基底的种类及其应用进展[J]. 分析化学, 2024, 52(7): 910-924.CHEN SH Y, ZHANG X Y, LIU B, et al. Classification and application of surface-enhanced Raman spectroscopy substrates[J]. Chinese Journal of Analytical Chemistry, 2024, 52(7): 910-924. (in Chinese). [5] 林海丹, 宋程程, 穆铭, 等. 基于苯并三唑功能化银/泡沫镍基底的表面增强拉曼光谱谱峰偏移策略检测痕量铜离子[J]. 分析化学, 2025, 53(9): 1566-1575.LIN H D, SONG CH CH, MU M, et al. Detection of trace copper ions on benzotriazole functionalized Silver/Nickel foam based on surface-enhanced Raman scattering peak shifting strategy[J]. Chinese Journal of Analytical Chemistry, 2025, 53(9): 1566-1575. (in Chinese). [6] MENG ZH D, TIAN ZH Q, YI J. Rapid theoretical method for inverse design on a tip-enhanced Raman spectroscopy (TERS) probe[J]. Optics Express, 2023, 31(10): 15474-15483. doi: 10.1364/OE.488322 [7] VERMA P. Tip-enhanced Raman spectroscopy: technique and recent advances[J]. Chemical Reviews, 2017, 117(9): 6447-6466. doi: 10.1021/acs.chemrev.6b00821 [8] SINEV I, KOMISSARENKO F, IORSH I, et al. Steering of guided light with dielectric nanoantennas[J]. ACS Photonics, 2020, 7(3): 680-686. doi: 10.1021/acsphotonics.9b01515 [9] 王晓坤, 李周, 梁国龙. 基于金属-介质-金属的可调谐窄带完美吸收的研究[J]. 中国光学(中英文), 2024, 17(2): 263-270. doi: 10.37188/CO.2023-0125WANG X K, LI ZH, LIANG G L. Tunable narrow-band perfect absorber based on metal-dielectric-metal[J]. Chinese Optics, 2024, 17(2): 263-270. (in Chinese). doi: 10.37188/CO.2023-0125 [10] HUO ZH CH, CHEN B, WANG ZH, et al. Enhanced plasmonic scattering imaging via deep learning-based super-resolution reconstruction for exosome imaging[J]. Analytical and Bioanalytical Chemistry, 2024, 416(29): 6773-6787. doi: 10.1007/s00216-024-05550-z [11] PHILIP A, KUMAR A R. The performance enhancement of surface Plasmon resonance optical sensors using nanomaterials: a review[J]. Coordination Chemistry Reviews, 2022, 458: 214424. doi: 10.1016/j.ccr.2022.214424 [12] YAN S, MA H, BAO Y F, et al. Optical responses of metallic plasmonic arrays under the localized excitation[J]. Nano Research, 2024, 17(3): 1571-1577. doi: 10.1007/s12274-023-5927-0 [13] CRUT A, MAIOLI P, DEL FATTI N, et al. Optical absorption and scattering spectroscopies of single nano-objects[J]. Chemical Society Reviews, 2014, 43(11): 3921-3956. doi: 10.1039/c3cs60367a [14] LIU Z W, WU J N, CAI CH, et al. Flexible hyperspectral surface Plasmon resonance microscopy[J]. Nature Communications, 2022, 13(1): 6475. doi: 10.1038/s41467-022-34196-7 [15] TU SH H, RUAN D G, TZENG S D, et al. Optical properties of InGaN/GaN multiquantum wells light-emitting diode with one-dimensional au nanoparticle grating[J]. Journal of Nanophotonics, 2014, 8(1): 84097. doi: 10.1117/1.JNP.8.084097 [16] MEYER S A, AUGUIÉ B, LE RU E C, et al. Combined SPR and SERS microscopy in the kretschmann configuration[J]. The Journal of Physical Chemistry A, 2012, 116(3): 1000-1007. doi: 10.1021/jp2107507 [17] SHEGAI T, MILJKOVIC V D, BAO K, et al. Unidirectional broadband light emission from supported plasmonic nanowires[J]. Nano Letters, 2011, 11(2): 706-711. doi: 10.1021/nl103834y [18] DOMINGUEZ D, ALHUSAIN M, ALHARBI N, et al. Fourier plane imaging microscopy for detection of plasmonic crystals with periods beyond the optical diffraction limit[J]. Plasmonics, 2015, 10(6): 1337-1344. doi: 10.1007/s11468-015-9938-x [19] 胡鹏涛, 高若谦, 葛明锋, 等. 流动相单分子免疫检测系统的设计[J]. 中国光学(中英文), 2025, 18(5): 1055-1065.HU P T, GAO R Q, GE M F, et al. Design of flow-phase single-molecule immunoassay detection system[J]. Chinese Optics, 2025, 18(5): 1055-1065. (in Chinese). [20] ORDAL M A, BELL R J, ALEXANDER R W, et al. Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W[J]. Applied Optics, 1985, 24(24): 4493-4499. doi: 10.1364/AO.24.004493 [21] 赵小龙, 常旭艳, 刘艳莉, 等. 基于非连通金属-介质-金属波导耦合D形谐振腔的多法诺共振传感器(英文)[J]. 中国光学(中英文), 2025, 18(6): 1484-1494. (查阅网上资料, 本条文献为英文文献, 请确认)ZHAO X L, CHANG X Y, LIU Y L, et al. Multi-Fano resonances sensing based on a non-through metal-insulator-metal waveguide coupling D-shaped cavity[J]. Chinese Optics, 2025, 18(6): 1484-1494. -
下载: