留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高对比度便携式眼底相机研究

陈隆 林哲凯 郑庚泳 何梓熙 曾亚光 王雪花 韩定安

陈隆, 林哲凯, 郑庚泳, 何梓熙, 曾亚光, 王雪花, 韩定安. 高对比度便携式眼底相机研究[J]. 中国光学(中英文). doi: 10.37188/CO.2025-0137
引用本文: 陈隆, 林哲凯, 郑庚泳, 何梓熙, 曾亚光, 王雪花, 韩定安. 高对比度便携式眼底相机研究[J]. 中国光学(中英文). doi: 10.37188/CO.2025-0137
CHEN Long, LIN Zhe-kai, ZHENG Geng-yong, HE Zi-xi, ZENG Ya-guang, WANG Xue-hua, HAN Ding-an. Research on High-Contrast Portable Fundus Camera[J]. Chinese Optics. doi: 10.37188/CO.2025-0137
Citation: CHEN Long, LIN Zhe-kai, ZHENG Geng-yong, HE Zi-xi, ZENG Ya-guang, WANG Xue-hua, HAN Ding-an. Research on High-Contrast Portable Fundus Camera[J]. Chinese Optics. doi: 10.37188/CO.2025-0137

高对比度便携式眼底相机研究

cstr: 32171.14.CO.2025-0137
基金项目: 国家自然科学基金(No. 62205060,No. 62075042);粤港澳智能微纳光电技术联合实验室(No. 2020B1212030010)资助项目
详细信息
    作者简介:

    陈 隆(2000—),男,广东肇庆人,主要从事光学成像与眼科医疗设备方面研究。E-mail:2356166943@qq.com

    王雪花(1987—),女,博士,副教授,2017年毕业于深圳大学获博士学位,主要从事光学成像技术研究。E-mail:xhwang10000@163.com

    韩定安(1976—),女,湖南湘潭人,博士,教授,2005年毕业于华南师范大学获博士学位,主要从事光电检测与生物医学成像研究。E-mail:handingan@163.com

  • 中图分类号: TH773

Research on High-Contrast Portable Fundus Camera

Funds: Supported by the National Natural Science Foundation of China (No. 62205239, No. 62075156); The Joint Laboratory of Guangdong, Hong Kong and Macao for Intelligent Micro- and Nano-Photonic Technology (No. 2020B1212030010)
More Information
  • 摘要:
    目的 

    针对传统便携式免散瞳眼底相机存在照明与成像光路相互制约、角膜杂散光干扰严重、视网膜不同区域难以同时清晰成像等问题,本文提出一种新型眼底光学系统设计方案。

    方法 

    该方案采用四点光源矩形布局与分区域亮度可调的照明方式,在3.2 mm瞳孔直径下使角膜杂散光较传统方法减少91.56%,并可实现视盘与黄斑区域的高对比度同步成像。系统通过照明光路与成像光路分离设计,结合线栅与液晶叠层偏振技术,有效抑制光学表面反射杂光。

    结果 

    在230.4 mm*90 mm紧凑型结构内同步实现53°大视场、±20 D屈光补偿,及6 μm的眼底分辨率。

    结论 

    本系统通过单次拍摄人眼即可获得视盘与黄斑细节清晰、对比度优良的视网膜图像。

     

  • 图 1  新型便携式眼底相机系统原理图

    Figure 1.  Schematic diagram of the proposed portable fundus camera system.

    图 2  四点光源排布及其照度分析。(a) 四点光源在瞳孔上的几何排布;(b)眼底的照明区域示意图

    Figure 2.  Four-point light source configuration and illuminance analysis. (a) Geometric arrangement of the four-point light sources on the pupil plane; (b) Schematic illustration of the illuminated region on the fundus.

    图 3  网膜物镜设计结果。(a) 网膜物镜结构;(b) 网膜物镜MTF曲线。

    Figure 3.  Design results of the retinal objective. (a) Optical layout of the retinal objective; (b) MTF curves of the retinal objective.

    图 4  眼底成像系统设计结果。

    Figure 4.  Design results of the fundus imaging system.

    图 5  不同光源布局照明仿真结果对比分析:(a)两点对称照明瞳孔面光场分布;(b)四点矩形照明瞳孔面光场分布;(c)两点对称照明眼底面照度分布;(d)四点矩形照明眼底面照度分布;(e)两点对称照明下传感器接收的角膜杂散光分布;(f)四点矩形照明下传感器接收的角膜杂散光分布。

    Figure 5.  Comparative analysis of illumination simulation results for different light source configurations. (a) Intensity distribution on the pupil plane under two-point symmetric illumination; (b) Intensity distribution on the pupil plane under four-point rectangular illumination; (c) Irradiance distribution on the fundus plane under two-point symmetric illumination; (d) Irradiance distribution on the fundus plane under four-point rectangular illumination; (e) Distribution of corneal stray light received by the sensor under two-point symmetric illumination; (f) Distribution of corneal stray light received by the sensor under four-point rectangular illumination.

    图 6  成像系统像质评价:(a) 0 D下可见光波段的调制传递函数曲线;(b) ±20 D范围内各视场在子午方向上、166.67 lp/mm处的光学传递函数模值;(c) ±20 D范围内各视场在弧矢方向上、166.67 lp/mm处的光学传递函数模值。

    Figure 6.  Image quality evaluation of the imaging system. (a) MTF curves in the visible wavelength range at 0 D; (b) Magnitude of the optical transfer function (|OTF|) at 166.67 lp/mm in the tangential direction for different fields within a refractive error range of ±20 D; (c) Magnitude of the optical transfer function (|OTF|) at 166.67 lp/mm in the sagittal direction for different fields within a refractive error range of ±20 D.

    图 7  便携式眼底相机机械装配图。

    Figure 7.  Mechanical assembly of the portable fundus camera.

    图 8  人眼成像测试:(a)对称两点照明成像;(b)四点矩形照明成像;(c)常规均匀照明的视网膜图像,其中(c1)视盘区域、(c2)黄斑中心凹、(c3)血管对比度局部(沿图中黄色截线所示);(d)区域调光后的视网膜图像,其中(d1)视盘区域、(d2)黄斑中心凹、(d3)血管对比度局部(沿图中黄色截线所示)。

    Figure 8.  Human eye imaging experiments. (a) Retinal image acquired under two-point symmetric illumination; (b) Retinal image acquired under four-point rectangular illumination; (c) Retinal image acquired under conventional uniform illumination, with (c1) the optic disc region, (c2) the foveal center, and (c3) a local profile of vascular contrast along the yellow line indicated; (d) Retinal image acquired with regionally adjusted illumination, with (d1) the optic disc region, (d2) the foveal center, and (d3) a local profile of vascular contrast along the yellow line indicated.

    表  1  眼底相机的设计技术指标

    Table  1.   Design specifications of the fundus camera.

    技术指标数值
    总长(mm)≤200
    视场角(deg)≥53
    入瞳直径(mm)2
    工作波长(nm)436~656/850
    调焦度数范围(D)-20~+20
    调制传递函数(MTF) @166.67 lp/mm≥0.2
    下载: 导出CSV

    表  2  本系统与国内市面上两款相机的性能参数对比

    Table  2.   Comparison of performance parameters between the proposed system and two commercially available domestic fundus cameras.

    工作参数 本系统 AI-FD16aF Kestrel 300
    入瞳直径 (mm) 3.2 3.5 3.5
    工作距离 (mm) 35±2 - 15±5
    分辨率 (lp/mm) ≥80 80 ≥60
    视场角 (°) 53 40 35
    屈光调节范围 (D) −20~+20 −15~+15 −15~+15
    照明方法 四点矩形 单点倾斜照明 单点倾斜照明
    尺寸(长*高)(mm*mm) 230*90 280*130 284*145
    下载: 导出CSV
  • [1] SACHDEVA V, VASSENEIX C, HAGE R, et al. Optic nerve head edema among patients presenting to the emergency department[J]. Neurology, 2018, 90(5): e373-e379. doi: 10.1212/wnl.0000000000004895
    [2] 陈蔚霖, 常军, 赵雪惠, 等. 广域眼底相机光学系统的设计与仿真分析[J]. 中国光学, 2020, 13(4): 814-821. doi: 10.37188/CO.2020-0066

    CHEN W L, CHANG J, ZHAO X H, et al. Optical system design and simulation of a wide-area fundus camera[J]. Chinese Optics, 2020, 13(4): 814-821. (in Chinese). doi: 10.37188/CO.2020-0066
    [3] LI B, CHEN H, ZHANG B L, et al. Development and evaluation of a deep learning model for the detection of multiple fundus diseases based on colour fundus photography[J]. British Journal of Ophthalmology, 2022, 106(8): 1079-1086.
    [4] MILEA D, NAJJAR R P, JIANG ZH B, et al. Artificial intelligence to detect papilledema from ocular fundus photographs[J]. New England Journal of Medicine, 2020, 382(18): 1687-1695. doi: 10.1056/NEJMoa1917130
    [5] LIU L, LIU Y M, YAN X T, et al. Retinal layer segmentation using gradient feature calculation in OCT[J]. Journal of Innovative Optical Health Sciences, 2024, 17(6): 2450021. doi: 10.1142/S1793545824500214
    [6] YAO X CH, SON T, MA J CH. Developing portable widefield fundus camera for teleophthalmology: Technical challenges and potential solutions[J]. Experimental Biology and Medicine, 2022, 247(4): 289-299. doi: 10.1177/15353702211063477
    [7] 王晓恒, 薛庆生. 大视场手持式免散瞳眼底照相机光学设计[J]. 光学学报, 2017, 37(9): 0922001. doi: 10.3788/AOS201737.0922001

    WANG X H, XUE Q SH. Optical design of portable Non-Mydriatic Fundus camera with large field of view[J]. Acta Optica Sinica, 2017, 37(9): 0922001. (in Chinese). doi: 10.3788/AOS201737.0922001
    [8] 江剑宇, 杨波, 万新军, 等. 便携式免散瞳带信标眼底相机光学系统[J]. 光学技术, 2019, 45(2): 240-244. doi: 10.13741/j.cnki.11-1879/o4.2019.02.021

    JIANG J Y, YANG B, WAN X J, et al. A portable and mydriasis-free fundus optical system with a beacon[J]. Optical Technique, 2019, 45(2): 240-244. (in Chinese). doi: 10.13741/j.cnki.11-1879/o4.2019.02.021
    [9] HONG Y, ZENG CH M, XIA CH L, et al. Design of automatic focusing fundus camera[J]. Proceedings of SPIE, 2021, 11780: 117800J. doi: 10.1117/12.2589586
    [10] 杨皓聿, 任文斌, 常献刚, 等. 一种小型眼底相机: 中国, 202011095592.1[P]. 2020-12-08.

    YANG H Y, REN W B, CHANG X G, et al. Small fundus camera: CN, 202011095592.1[P]. 2020-12-08. (in Chinese).
    [11] 牟国强, 陈荡荡, 杨皓聿. 一种用于眼底相机调焦的光学系统及眼底相机: 中国, 202410579696.1[P]. 2024-07-02.

    MOU G Q, CHEN D D, YANG H Y. Optical system for fundus camera focusing and fundus camera: CN, 202410579696.1[P]. 2024-07-02. (in Chinese).
    [12] HAFIZ F, CHALAKKAL R J, HONG S C, et al. A new approach to non-mydriatic portable fundus imaging[J]. Expert Review of Medical Devices, 2022, 19(4): 303-314. doi: 10.1080/17434440.2022.2070004
    [13] REMINGTON L A. Clinical Anatomy and Physiology of the Visual System[M]. Amsterdam: Elsevier, 2012: 233-252.
    [14] YOUSSIF A A A, GHALWASH A Z, GHONEIM A S. A comparative evaluation of preprocessing methods for automatic detection of retinal anatomy[C]. Proceedings of the 5th International Conference on Informatics & Systems, INFOS, 2007: 24-30.
    [15] KOLAR R, ODSTRCILIK J, JAN J, et al. Illumination correction and contrast equalization in colour fundus images[C]. 2011 19th European Signal Processing Conference, IEEE, 2011: 298-302.
    [16] 盖俊帅, 马玉婷, 张运海, 等. 用于眼底视网膜图像的去雾状杂散光算法[J]. 液晶与显示, 2024, 39(8): 1070-1078. doi: 10.37188/CJLCD.2023-0289

    GAI J S, MA Y T, ZHANG Y H, et al. Dehazing stray light algorithm for fundus retinal image[J]. Chinese Journal of Liquid Crystals and Displays, 2024, 39(8): 1070-1078. (in Chinese). doi: 10.37188/CJLCD.2023-0289
    [17] SAHA S K, XIAO D, KANAGASINGAM Y. A novel method for correcting non-uniform/poor illumination of color fundus photographs[J]. Journal of Digital Imaging, 2018, 31(4): 553-561. doi: 10.1007/s10278-017-0040-0
    [18] ROSSI A, RAHIMI M, SON T, et al. Preserving polarization maintaining photons for enhanced contrast imaging of the retina[J]. Biomedical Optics Express, 2023, 14(11): 5932-5945. doi: 10.1364/BOE.501636
    [19] ROSSI A, RAHIMI M, LE D, et al. Portable widefield fundus camera with high dynamic range imaging capability[J]. Biomedical Optics Express, 2023, 14(2): 906-917. doi: 10.1364/BOE.481096
    [20] ZAITSEV M, MACLAREN J, HERBST M. Motion artifacts in MRI: a complex problem with many partial solutions[J]. Journal of Magnetic Resonance Imaging, 2015, 42(4): 887-901. doi: 10.1002/jmri.24850
    [21] DUKE D J, KNAST T, THETHY B, et al. A low-cost high-speed CMOS camera for scientific imaging[J]. Measurement Science and Technology, 2019, 30(7): 075403. doi: 10.1088/1361-6501/ab1832
    [22] 罗敬, 陈兴达, 吕凝睿, 等. 光学系统偏振特性影响抑制方法综述[J]. 中国光学(中英文), 2025, 18(5): 979-1015. doi: 10.37188/CO.2025-0066

    LUO J, CHEN X D, LV N R, et al. A review of methods for suppressing the influence of polarization characteristics in optical systems[J]. Chinese Optics, 2025, 18(5): 979-1015. (in Chinese). doi: 10.37188/CO.2025-0066
    [23] 史浩东, 许家伟, 张健, 等. 强光背景下主动偏振成像方法[J]. 中国光学(中英文), 2024, 17(5): 1075-1086. doi: 10.37188/CO.2023-0151

    SHI H D, XU J W, ZHANG J, et al. Active polarization imaging method under strong light background[J]. Chinese Optics, 2024, 17(5): 1075-1086. (in Chinese). doi: 10.37188/CO.2023-0151
    [24] 邢陈陈, 郑继红, 陈芳芳, 等. 光控取向液晶偏振全息柱透镜的制备及聚焦特性[J]. 液晶与显示, 2024, 39(5): 593-601. doi: 10.37188/CJLCD.2024-0027

    XING CH CH, ZHENG J H, CHEN F F, et al. Preparation and focusing characteristics of polarized holographic photo-alignment liquid crystal cylindrical lenses[J]. Chinese Journal of Liquid Crystals and Displays, 2024, 39(5): 593-601. (in Chinese). doi: 10.37188/CJLCD.2024-0027
    [25] International Agency for the Prevention of Blindness. Equipment specifications: Fundus camera for diabetic retinopathy screening: non-mydriatic[R]. London: International Agency for the Prevention of Blindness, 2019.
    [26] 肖志涛, 娄世良, 吴骏, 等. 立体成像眼底相机光学系统设计[J]. 光学 精密工程, 2018, 26(5): 1054-1060. doi: 10.3788/OPE.20182605.1054

    XIAO ZH T, LOU SH L, WU J, et al. Design of optical system for stereo imaging fundus camera[J]. Optics and Precision Engineering, 2018, 26(5): 1054-1060. (in Chinese). doi: 10.3788/OPE.20182605.1054
    [27] LEE S J, YANG K M, LEE K B, et al. Design of illumination system using characterized illuminances for smartphone-based fundus camera[J]. Optics and Lasers in Engineering, 2023, 168: 107664. doi: 10.1016/j.optlaseng.2023.107664
    [28] 长沙鹰瞳健康科技有限公司. AI-FD16aF眼底相机[EB/OL]. (2022-10-12). https://www.chem17.com/product/det ail/37337180.html. (查阅网上资料,未找到本条文献信息且网址打不开,请确认,且请补充引用日期信息).

    Changsha Eyetong Health Technology Co., Ltd. AI-FD16aF Fundus camera[EB/OL]. (2022-10-12). https://www.chem17.com/product/detail/37337180.html. (in Chinese).
    [29] 重庆贝奥新视野医疗设备有限公司. 新视野全自动便携式眼底相机Kestrel 300[EB/OL]. (2025-05-19). https://www.lyqbq.com/ydzxj/117.html. (查阅网上资料,未找到引用日期信息,请确认补充).

    Chongqing Bio New Vision Medical Equipment Co., Ltd. Kestrel 300 Fundus camera[EB/OL]. (2025-05-19). https://www.lyqbq.com/ydzxj/117.html. (in Chinese) (查阅网上资料,未找到对应的英文翻译,请确认).
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  6
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-10-29
  • 录用日期:  2026-01-15
  • 网络出版日期:  2026-02-09

目录

    /

    返回文章
    返回