留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

塔式太阳能电站定日镜瞄准策略优化方法

田英杰 魏秀东 张全胜 张亚南 余强

田英杰, 魏秀东, 张全胜, 张亚南, 余强. 塔式太阳能电站定日镜瞄准策略优化方法[J]. 中国光学(中英文). doi: 10.37188/CO.2025-0128
引用本文: 田英杰, 魏秀东, 张全胜, 张亚南, 余强. 塔式太阳能电站定日镜瞄准策略优化方法[J]. 中国光学(中英文). doi: 10.37188/CO.2025-0128
TIAN Ying-jie, WEI Xiu-dong, ZHANG Quan-sheng, ZHANG Ya-nan, YU Qiang. Optimal design of aiming strategy for tower solar power stations[J]. Chinese Optics. doi: 10.37188/CO.2025-0128
Citation: TIAN Ying-jie, WEI Xiu-dong, ZHANG Quan-sheng, ZHANG Ya-nan, YU Qiang. Optimal design of aiming strategy for tower solar power stations[J]. Chinese Optics. doi: 10.37188/CO.2025-0128

塔式太阳能电站定日镜瞄准策略优化方法

cstr: 32171.14.CO.2025-0128
基金项目: 国家自然基金面上(No. 52376219)
详细信息
    作者简介:

    田英杰(2002—),男,安徽淮北人,长春理工大学硕士研究生,主要从事塔式太阳能热发电技术、高能流太阳辐射模拟系统设计及研制的研究。E-mail:2818509790@qq.com

    魏秀东(1979—),男,河北河间人,博士,副研究员,硕士生导师,主要从事非成像光学设计、机器视觉与摄影测量技术、光学面型检测、高能流太阳辐射模拟系统设计及研制的研究。E-mail:weixiudong211@163.com

  • 中图分类号: TP394.1;TH691.9

Optimal design of aiming strategy for tower solar power stations

Funds: Supported by National Natural Science Foundation of China General Program (No. 52376219)
More Information
  • 摘要:

    为了实现吸热器表面能流分布均匀,提出了一种塔式太阳能电站定日镜瞄准策略优化方法。首先,基于全场定日镜瞬时光学效率的计算结果对镜场进行分区,不同分区的定日镜设计不同的瞄准因子;然后,根据瞄准因子计算定日镜的光斑尺寸,通过光斑尺寸与吸热器尺寸比值确定光斑相对大小,并规划瞄准点分布;最后,利用遗传算法优化定日镜瞄准点分布,实现吸热器表面均匀的能流分布。以百兆瓦级塔式光热电站为例,对定日镜瞄准策略进行优化,在典型日中春分日条件下吸热器表面能流密度峰值由赤道瞄准的1.94 MW/m2降低到1.01 MW/m2,均匀性提高53.29%,截断因子仅减小0.86%,在保证截断效率的同时确保了吸热器的高效安全运行。

     

  • 图 1  圆柱形吸热器表面能流分布计算

    Figure 1.  Calculation of energy flow distribution on the surface of cylindrical solar collectors

    图 2  定日镜存在阴影挡光的条件

    Figure 2.  Conditions under which a heliostat casts shadows and blocks light.

    图 3  定日镜场布置图

    Figure 3.  Layout of heliostat field

    图 4  不同瞄准策略在典型日条件下的吸热器能流分布

    Figure 4.  Flux map on the receiver for different aiming strategies under typical day conditions

    图 5  不同瞄准策略的圆柱形吸热器能流分布图

    Figure 5.  Flux map on cylindrical receivers with different aiming strategies.

    表  1  德令哈地区100 MW光热电站镜场设计参数

    Table  1.   Design parameters of the 100 MW heliostat field for the Delingha CSP plant

    参数名称 数值
    地理纬度/° 37.36
    定日镜数/面 26667
    立柱高度/m 3.2
    定日镜高度/m 4.81
    定日镜宽度/m 6.29
    有效反射面积/m2 30
    镜面反射率 0.94
    塔光学高度/m 220
    吸热器高度/m 16.4
    吸热器直径/m 15.8
    下载: 导出CSV

    表  2  赤道瞄准、奇偶瞄准、多目标瞄准在典型日结果对比

    Table  2.   Comparison of results for equatorial aiming odd-even aiming, and multi aiming on typical days.

    典型日(天) 时刻(h) DNI(KW/m2) 瞄准因子[$ {K}_{1},{K}_{2},{K}_{3} $] 峰值能流(MW/m2) 截断因子(%) $ \Delta {f}_{int} $(%) CV
    春分日(81) 12.0 0.850 赤道瞄准 1.9431 82.02 0.0 0.4503
    [1.8] 1.0268 79.79 −2.23 0.2155
    [2.0,2.5,3.0] 1.0171 81.16 −0.86 0.2103
    夏至日(172) 12.0 0.972 赤道瞄准 2.0974 82.24 0.0 0.4641
    [1.8] 1.1036 79.96 −2.28 0.1822
    [2.0,2.5,3.0] 1.1214 81.29 −0.95 0.1617
    秋分日(264) 12.0 0.964 赤道瞄准 2.2012 82.02 0.0 0.4501
    [1.8] 1.1647 79.78 −2.24 0.2096
    [2.0,2.5,3.0] 1.1859 81.14 −0.88 0.2019
    冬至日(345) 12.0 0.882 赤道瞄准 1.9698 80.65 0.0 0.4507
    [3.0] 1.0578 78.51 −2.14 0.2299
    [2.0,2.5,3.0] 1.1026 80.07 −0.58 0.2259
    下载: 导出CSV
  • [1] 吕子奎, 房方. 基于能量流的塔式太阳能热发电吸热器动态建模[J]. 太阳能学报, 2022, 43(6): 132-137. doi: 10.19912/j.0254-0096.tynxb.2020-1031

    LYU Z K, FANG F. Dynamic modeling of solar tower receiver based on energy flow[J]. Acta Energiae Solaris Sinica, 2022, 43(6): 132-137. (in Chinese). doi: 10.19912/j.0254-0096.tynxb.2020-1031
    [2] MOURAD A, AISSA A, SAID Z, et al. Recent advances on the applications of phase change materials for solar collectors, practical limitations, and challenges: a critical review[J]. Journal of Energy Storage, 2022, 49: 104186. doi: 10.1016/j.est.2022.104186
    [3] JIANG K J, TIAN Z Q, ZHANG Q, et al. Dynamic response characteristics of molten salt solar tower power plant utilizing coordinated control strategies for optimized peak shaving performance[J]. Case Studies in Thermal Engineering, 2025, 75: 107061. doi: 10.1016/j.csite.2025.107061
    [4] LI X Y, BAI F W. A review on the thermal modeling method for molten salt receivers of concentrating solar power tower plants[J]. Energies, 2025, 18(2): 292. doi: 10.3390/en18020292
    [5] OBERKIRSCH L, ZANGER D A V, QUINTO D M, et al. Static optimal control: Real-time optimization within closed-loop aim point control for solar power towers[J]. Solar Energy, 2023, 255: 327-338. doi: 10.1016/j.solener.2023.03.051
    [6] ELFEKY K E, WANG Q W. Techno-economic assessment and optimization of the performance of solar power tower plant in Egypt's climate conditions[J]. Energy Conversion and Management, 2023, 280: 116829. doi: 10.1016/j.enconman.2023.116829
    [7] SÁNCHEZ-GONZÁLEZ A, KONTOPYRGOS M, MILIDONIS K, et al. Heliostat field aiming strategy based on deterministic optimization: an experimental validation[J]. Renewable Energy, 2024, 236: 121406. doi: 10.1016/j.renene.2024.121406
    [8] CUI M SH, ZHANG Q, JIANG K J, et al. A multi-objective control strategy for molten salt external receiver in solar tower power plant[J]. Applied Thermal Engineering, 2025, 275: 126818. doi: 10.1016/j.applthermaleng.2025.126818
    [9] VANT-HULL L L. The role of “allowable flux density” in the design and operation of molten-salt solar central receivers[J]. Journal of Solar Energy Engineering, 2002, 124(2): 165-169. doi: 10.1115/1.1464124
    [10] SÁNCHEZ-GONZÁLEZ A, RODRÍGUEZ-SÁNCHEZ M R, SANTANA D. Aiming factor to flatten the flux distribution on cylindrical receivers[J]. Energy, 2018, 153: 113-125. doi: 10.1016/j.energy.2018.04.002
    [11] SÁNCHEZ-GONZÁLEZ A, RODRÍGUEZ-SÁNCHEZ M R, SANTANA D. Aiming strategy model based on allowable flux densities for molten salt central receivers[J]. Solar Energy, 2017, 157: 1130-1144. doi: 10.1016/j.solener.2015.12.055
    [12] COLLADO F J, GUALLAR J. A two-parameter aiming strategy to reduce and flatten the flux map in solar power tower plants[J]. Solar Energy, 2019, 188: 185-189. doi: 10.1016/j.solener.2019.06.001
    [13] RAJ M, BHATTACHARYA J. Precise and fast spillage estimation for a central receiver tower based solar plant[J]. Solar Energy, 2023, 265: 112103. doi: 10.1016/j.solener.2023.112103
    [14] COLLADO F J, GUALLAR J. Fast and reliable flux map on cylindrical receivers[J]. Solar Energy, 2018, 169: 556-564. doi: 10.1016/j.solener.2018.05.037
    [15] SÁNCHEZ-GONZÁLEZ A, SANTANA D. Solar flux distribution on central receivers: a projection method from analytic function[J]. Renewable Energy, 2015, 74: 576-587. doi: 10.1016/j.renene.2014.08.016
    [16] RIZVI A A, DANISH S N, EL-LEATHY A, et al. A review and classification of layouts and optimization techniques used in design of heliostat fields in solar central receiver systems[J]. Solar Energy, 2021, 218: 296-311. doi: 10.1016/j.solener.2021.02.011
    [17] 吴凡路, 闫得杰, 姬琪, 等. 天问一号星下点太阳高度角在轨实时计算方法[J]. 光学 精密工程, 2022, 30(2): 210-216. doi: 10.37188/OPE.20223002.0210

    WU F L, YAN D J, JI Q, et al. On-orbit real-time calculation method of solar elevation angle of sub-satellite point of Tianwen-1[J]. Optics and Precision Engineering, 2022, 30(2): 210-216. (in Chinese). doi: 10.37188/OPE.20223002.0210
    [18] SCHWARZBÖZL P, PITZ-PAAL R, SCHMITZ M. Visual HFLCAL-A software tool for layout and optimisation of heliostat fields[C]//Proceedings. 2009. (查阅网上资料, 未找到本条文献信息, 请确认).
    [19] ASTOLFI M, BINOTTI M, MAZZOLA S, et al. Heliostat aiming point optimization for external tower receiver[J]. Solar Energy, 2017, 157: 1114-1129. doi: 10.1016/j.solener.2016.03.042
    [20] 常宁东, 冯春, 程鹏达, 等. 基于Bekker理论改进遗传算法的野外路径优化方法研究[J]. 光学 精密工程, 2023, 31(5): 767-775. doi: 10.37188/OPE.20233105.0767

    CHANG N D, FENG CH, CHENG P D, et al. Research on off-road path optimization algorithm based on Bekker theory improved genetic algorithm[J]. Optics and Precision Engineering, 2023, 31(5): 767-775. (in Chinese). doi: 10.37188/OPE.20233105.0767
    [21] 杨健, 赵宏宇. 浮点数编码改进遗传算法在平面度误差评定中的研究[J]. 光学 精密工程, 2017, 25(3): 706-711. doi: 10.3788/OPE.20172503.0706

    YANG J, ZHAO H Y. The research of floating-point codingimproved genetic algorithmin flatnesserror evaluation[J]. Optics and Precision Engineering, 2017, 25(3): 706-711. (in Chinese). doi: 10.3788/OPE.20172503.0706
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  39
  • HTML全文浏览量:  14
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-10-09
  • 录用日期:  2025-12-10
  • 网络出版日期:  2025-12-30

目录

    /

    返回文章
    返回