Dynamic response characteristics of mirror-shaped structures in temperature gradient fields
-
摘要:
飞机起飞到抵达巡航高度的过程中,外界环境温度会发生剧烈变化,由于内部摆镜转台在步进扫描工作模式下周期性快速启停,驱动电机和轴承会持续产生热量,导致转台整体形成温度梯度,进而对摆镜面形产生影响,最终影响整个光学系统的成像质量。针对这一问题,本文提出了相应分析方法。建立摆镜转台热平衡方程,并结合实际热边界条件,构建热固耦合有限元分析模型。利用该模型,可以优化摆镜转台和粘接层的设计。本文通过分析摆镜在复杂温度环境变化及步进扫描工况条件下的面形变化规律和胶层参数的关系,得到胶层在1 mm厚度时,摆镜面形最优精度RMS为43.54 nm。在地面温箱中模拟起飞时温度变化和工作状态,检测摆镜面形,检测结果与分析方法所得仿真结果相比,误差小于10%,验证该方法可用于评估摆镜面形在温度梯度场中的动态响应特性,有利于摆镜粘接层和相关部件的设计。
Abstract:During the ascent of an aircraft to its cruising altitude, the external environmental temperature changes drastically. Simultaneously, the internal stepper motors and bearings continuously generate heat due to the periodic rapid start-stop operations of the scanning mirror turntable in the step-scanning mode. These factors cause a temperature gradient across the turntable, which induces thermal deformation of the mirror surface figure and ultimately degrades the imaging quality of the optical system. To address this issue, an analysis method based on thermal-structural coupling is proposed. First, the thermal balance equation of the scanning mirror turntable was established. Combined with the actual thermal boundary conditions, a finite element analysis (FEA) model was constructed. This model was utilized to optimize the design of the mirror assembly and the adhesive layer by analyzing the relationship between the surface figure and adhesive parameters under complex thermal environments and working conditions. The optimization results show that when the adhesive layer thickness is 1 mm, the mirror achieves the optimal surface figure accuracy with a root-mean-square (RMS) value of 43.54 nm. Furthermore, ground thermal chamber tests were conducted to simulate the temperature variations and operating status during takeoff. The relative error between the experimental measurements and the simulation results is less than 10%. These results verify that the proposed method is effective for evaluating the dynamic response characteristics of the scanning mirror surface in a temperature gradient field, providing theoretical support for the design of the mirror bonding layer and related components.
-
表 1 摆镜转台主要材料参数
Table 1. Main material parameters of the scanning mirror turntable
部件 Material Density
$ \rho {\text{/(g/cm}}^{\text{3}}\text{)} $Young's
modulus
$ E\text{/(Gpa)} $CTE
$ \alpha {\text{/(10}}^{\text{-6}}\text{/K)} $Thermal
conductivity
$ \lambda \text{/[W/(m}\cdot \text{K)]} $摆镜 SiC 3.2 450 2.3 155 背板 4J32 8.1 150 2.4 145 结构件 AlSiC
(40%)2.89 135 11 130 表 2 不同工况下的摆镜面形
Table 2. Scanning mirror surface figure under different operating conditions
时间 模拟飞行 1037 s模拟飞行3 h 常温0 s 常温3 h RMS/nm 43.54 39.59 20.77 33.80 -
[1] QU R, ZHANG H W, YANG L, et al. Analysis and design of infrared search and track system with afocal zoom telescope[J]. Applied Sciences, 2023, 13(24): 13132. doi: 10.3390/app132413132 [2] LI H, ZHANG J J, CAI L X, et al. The dynamic prediction method for aircraft cabin temperatures based on flight test data[J]. Aerospace, 2024, 11(9): 755. doi: 10.3390/aerospace11090755 [3] 王瑾, 柳鸣, 安志勇. 基于牛顿反射式红外系统的二维转台的结构设计与有限元分析[J]. 光学仪器, 2015, 37(4): 358-362. doi: 10.3969/j.issn.1005-5630.2015.04.016WANG J, LIU M, AN ZH Y. Two-dimensional turntable structure design and finite element analysis based on Newton's reflex infrared system[J]. Optical Instruments, 2015, 37(4): 358-362. (in Chinese). doi: 10.3969/j.issn.1005-5630.2015.04.016 [4] WANG D X, LI ZH G, LIN J Q, et al. Thermal-optical characteristics analysis of an aerial camera optical system[J]. Applied Optics, 2022, 61(28): 8190-8196. doi: 10.1364/AO.459626 [5] 杨勋, 徐抒岩, 李晓波, 等. 温度梯度对大口径反射镜热稳定性公差的影响[J]. 红外与激光工程, 2019, 48(9): 916003. doi: 10.3788/IRLA201948.0916003YANG X, XU SH Y, LI X B, et al. Influence of temperature gradient on thermal stability tolerance of large aperture reflective mirror[J]. Infrared and Laser Engineering, 2019, 48(9): 916003. (in Chinese). doi: 10.3788/IRLA201948.0916003 [6] 王丹艺, 蒋山平, 周盈, 等. 用于航天光照模拟的吊挂式米级金属反射镜热稳定性分析[J]. 光学技术, 2021, 47(4): 385-389. doi: 10.13741/j.cnki.11-1879/o4.2021.04.001WANG D Y, JIANG SH P, ZHOU Y, et al. Thermal stability analysis of Meter-scale metal mirrors for space illumination simulation[J]. Optical Technique, 2021, 47(4): 385-389. (in Chinese). doi: 10.13741/j.cnki.11-1879/o4.2021.04.001 [7] 吴清文, 卢锷, 王家骐, 等. 主镜稳定温度场特性分析[J]. 光学 精密工程, 1996, 4(6): 47-53.WU Q W, LU E, WANG J Q, et al. A study on static thermal properties of primary mirror[J]. Optics and Precision Engineering, 1996, 4(6): 47-53. (in Chinese). [8] 王富国. 温度和支撑方式对1.2m SiC主镜面形的影响分析[J]. 光子学报, 2011, 40(6): 933-936. doi: 10.3788/gzxb20114006.0933WANG F G. Study on the influence of temperature and support style to the 1.2m Sic primary mirror surface figure[J]. Acta Photonica Sinica, 2011, 40(6): 933-936. (in Chinese). doi: 10.3788/gzxb20114006.0933 [9] 谷果果. 空间温变场对不同结构平面反射镜的性能影响研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.GU G G. Research on the effects of space temperature field on performance of different structures plane mirror[D]. Harbin: Harbin Institute of Technology, 2013. (in Chinese). [10] 郑潇逸. 基于热致主动光学的大口径空间相机波前校正关键技术研究[D]. 长春: 吉林大学, 2025.ZHENG X Y. Research on key technology of wavefront correction of large aperture space camera based on thermal active optical[D]. Changchun: Jilin University, 2025. (in Chinese). [11] 林子轩. 非均匀温度场下的多折叠肋式可展天线结构热响应分析[D]. 沈阳: 沈阳建筑大学, 2024.LIN Z X. Analysis of thermal response of multi-folding rib flexible antenna structure at non-uniform temperature field[D]. Shenyang: Shenyang Jianzhu University, 2024. (in Chinese). [12] 张庆. 基于温度反馈与有限元分析的光学天线自动装调技术研究[D]. 长春: 长春理工大学, 2024.ZHANG Q. Research on automatic alignment technology of optical antenna based on temperature feed back and finite element analysis[D]. Changchun: Changchun University of Science and Technology, 2024. (in Chinese). [13] 张家齐, 郭艺博, 张友建, 等. 机载宽温条件下反射镜组件与粘接层设计[J]. 中国光学(中英文), 2023, 16(3): 578-586.ZHANG J Q, GUO Y B, ZHANG Y J, et al. Design of reflector assembly and adhesive layer under airborne wide temperature conditions[J]. Chinese Optics, 2023, 16(3): 578-586. (in Chinese). [14] ZHANG X M, LIU J H, XIA H X, et al. Effects of curing, temperature, pressure, and moisture on the surface-figure of a high-precision bonded Mirror[J]. Precision Engineering, 2024, 85: 205-216. doi: 10.1016/j.precisioneng.2023.10.012 [15] 曹赛赛, 杨海生, 罗斌, 等. 热力耦合作用的航空发动机主轴球轴承动力学分析[J]. 航空动力学报, 2024, 39(12): 20220890. doi: 10.13224/j.cnki.jasp.20220890CAO S S, YANG H SH, LUO B, et al. Dynamic analysis of aero-engine spindle ball bearings with thermal-mechanical coupling[J]. Journal of Aerospace Power, 2024, 39(12): 20220890. (in Chinese). doi: 10.13224/j.cnki.jasp.20220890 [16] 朱爱华, 朱成九, 张卫华. 滚动轴承摩擦力矩的计算分析[J]. 轴承, 2008(7): 1-3. doi: 10.3969/j.issn.1000-3762.2008.07.001ZHU A H, ZHU CH J, ZHANG W H. Analysis on calculation of friction torque of rolling bearings[J]. Bearing, 2008(7): 1-3. (in Chinese). doi: 10.3969/j.issn.1000-3762.2008.07.001 -
下载: