留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Development of visible/near-infrared multiband laser filter film

XIN Ya-wu PENG Yong-chao ZHANG Yu-xiang CAO Xing-yu HAN Yang GUO Hong-ling XIONG Shi-fu HU Zhang-gui

辛亚武, 彭永超, 张宇翔, 曹兴宇, 韩阳, 郭洪玲, 熊仕富, 胡章贵. 可见/近红外多波段激光滤光膜的研制[J]. 中国光学(中英文). doi: 10.37188/CO.EN-2025-0031
引用本文: 辛亚武, 彭永超, 张宇翔, 曹兴宇, 韩阳, 郭洪玲, 熊仕富, 胡章贵. 可见/近红外多波段激光滤光膜的研制[J]. 中国光学(中英文). doi: 10.37188/CO.EN-2025-0031
XIN Ya-wu, PENG Yong-chao, ZHANG Yu-xiang, CAO Xing-yu, HAN Yang, GUO Hong-ling, XIONG Shi-fu, HU Zhang-gui. Development of visible/near-infrared multiband laser filter film[J]. Chinese Optics. doi: 10.37188/CO.EN-2025-0031
Citation: XIN Ya-wu, PENG Yong-chao, ZHANG Yu-xiang, CAO Xing-yu, HAN Yang, GUO Hong-ling, XIONG Shi-fu, HU Zhang-gui. Development of visible/near-infrared multiband laser filter film[J]. Chinese Optics. doi: 10.37188/CO.EN-2025-0031

可见/近红外多波段激光滤光膜的研制

详细信息
  • 中图分类号: O482.31

Development of visible/near-infrared multiband laser filter film

doi: 10.37188/CO.EN-2025-0031
Funds: Supported by the National Natural Science Foundation of China (No. 62304152)
More Information
    Author Bio:

    XIN Ya-wu is currently a Master’s student at Tianjin University of Technology. He received his BE degree in Optoelectronic Information Science and Engineering from Nanyang Institute of Technology in 2022. His research interests focus on visible and infrared optical coatings design and fabrication. E-mail: xyw_optics@163.com

    XIONG Shi-fu is an assistant researcher at the Functional Crystal Institute of Tianjin University of Technology, where he is also the director of the crystal coating laboratory. He graduated from Changchun University of Science and Technology in 2018 with a Ph.D. in optical engineering, and his main research direction is the development and performance evaluation of precision optical thin films. E-mail: xsf_optics@126.com

    Corresponding author: xsf_optics@126.com
  • 摘要:

    滤光片作为光电探测系统中的关键部件,能够简化光学系统并提高探测效率。根据使用需求,需要设计并制备出一种多达5个波段的可见/近红外滤光膜,同时满足2个波段高反射和3个波段高透过的要求。因此,本文对膜系设计、薄膜制备工艺以及膜层厚度的控制精度进行了系统研究。在本工作中,将短波通膜系与长波通膜系进行叠加,并调整膜系的周期数和匹配系数,以满足截止波段的要求。此外,运用Smith方法对带通膜系进行优化透过波段,从而完成可见/近红外多波段激光滤光膜的设计。在制备过程中,结合膜层的灵敏度,通过反演分析对各光学监控片所监控的膜层。对监控过程中光信号较弱的光学监控方案进行模拟和修正,并匹配光信号较强的监控波长,进而提高了膜层厚度的控制精度以及在指定波长范围内的透过率。最终,制备的滤光膜实际物理厚度为9.66微米,与理论设计厚度的误差小于0.4%,且3个透过波段的透过率均超过99%。在455~500 nm和910~1000 nm波段的平均透过率分别为0.45%和0.16%。

     

  • Figure 1.  Transmittance spectral curves of (a) long-wavelength-passing and (b) short-wavelength-passing with different period numbers, (c) superimposed transmittance spectral curves of film system at period number S1=8, S2=15, (d) initial design and (e) optimized design transmittance spectral curve, (f) transmittance spectral curve of antireflection film.

    Figure 2.  Optical monitoring design of multiband laser filter film (a) 1# (b) 2# (c) 3#.

    Figure 3.  (a) Measured and designed transmittance spectral curve of film, (b)1# (c) 2# (d) 3# measured and designed transmittance spectral curves for optical controls, (e) physical thickness of the film layer, (f) sensitivity of the film layer.

    Figure 4.  Adjusted 2# optical monitoring (a) design scheme and (b) experimental test transmittance spectral curve, measured and design transmittance spectral curves for (c) single-sided and (d) double-sided films.

    Figure 5.  (a) Cross-sectional morphology of multiband laser filter film. (b) Uncoated substrate surface shapes. (c) Single-sided coated surface shapes. (d) Double-sided coated surface shapes.

    Table  1.   Technical parameters of multiband laser filter film.

    Parameter Specification
    Angle /° 0
    Transmission band /nm 880 & 1064 & 1083& 1342
    Transmittance /% ≥99
    Waveband of cut−off region /nm 455-500 & 910-1000
    Transmittance of cut−off region /% <1
    下载: 导出CSV

    Table  2.   Equipment process parameters.

    MaterialSubstrate
    Temperature/C
    Degree of
    Vacuum/mbar
    Deposition
    Rate/nm·s−1
    Flow Rate of
    O2/sccm
    APSHPE
    Ta2O51805×10−50.31535
    SiO20.72525
    下载: 导出CSV

    Table  3.   Spectral theoretical values and period numbers.

    Cycles number of S1T455-500nm /%Cycles number of S2T910-1000nm /%
    243.23344.66
    410.68612.49
    62.4295.70
    80.56120.87
    100.13150.12
    120.02180.07
    下载: 导出CSV
  • [1] ZHANG D H, DONG Z M, ZHANG CH, et al. Investigation on parallel auxiliary adjusting machine of spatial filter lens for a high-power laser facility[J]. Optics & Laser Technology, 2022, 147: 107597.
    [2] ZHANG J L, GAO G J, WANG B L, et al. Background noise resistant underwater wireless optical communication using faraday atomic line laser and filter[J]. Journal of Lightwave Technology, 2022, 40(1): 63-73. doi: 10.1109/JLT.2021.3118447
    [3] CHEN X CH, LIANG P X, WU Q, et al. Fluorescence enhanced optical resonator constituted of quantum dots and thin film resonant cavity for high-efficiency reflective color filter[J]. Nanomaterials, 2021, 11(11): 2813. doi: 10.3390/nano11112813
    [4] ZHU H, XIN Y W, CHEN Y R, et al. Development of resonant cavity film for 575 nm all-solid-state laser system[J]. Coatings, 2023, 13(7): 1278. doi: 10.3390/coatings13071278
    [5] SHAKTHI MURUGAN K H, SUMATHI M. Design and analysis of 5G optical communication system for various filtering operations using wireless optical transmission[J]. Results in Physics, 2019, 12: 460-468. doi: 10.1016/j.rinp.2018.10.064
    [6] GE P F, LING X T, WANG J H, et al. Optical filter bank modeling and design for multi-color visible light communications[J]. IEEE Photonics Journal, 2021, 13(1): 7901219.
    [7] NIKOLAIDOU K, CONDELIPES P G M, CANEIRA C F R, et al. Monolithically integrated optical interference and absorption filters on thin film amorphous silicon photosensors for biological detection[J]. Sensors and Actuators B: Chemical, 2022, 356: 131330. doi: 10.1016/j.snb.2021.131330
    [8] LIU ZH X, TAO L T, ZHANG Y ZH, et al. Narrowband near-infrared photodetector enabled by dual functional internal-filter-induced selective charge collection[J]. Advanced Optical Materials, 2021, 9(15): 2100288. doi: 10.1002/adom.202100288
    [9] BAN CH, GAO P, REN SH P, et al. Design and manufacturing of filter sets for dual-color synchronous gene sequencing[J]. Coatings, 2023, 13(9): 1555. doi: 10.3390/coatings13091555
    [10] WANG T T. Fabrication of hard infrared anti-reflection coating with broadband in the wavelength of 0.8~1.7 μm and 3.7~4.8 μm based on oxide material[J]. Chinese Optics, 2014, 7(5): 816-822. (in Chinese).
    [11] MI G Y, ZHANG J F, HAN J, et al. Research on antireflection coating for TV, laser, mid-infrared wavebands[J]. Laser & Infrared, 2016, 46(5): 593-596. (in Chinese). doi: 10.3969/j.issn.1001-5078.2016.05.016
    [12] BELLUM J C, FIELD E S, KLETECKA D E, et al. Design and laser damage properties of a dichroic beam combiner coating for 22.5-deg incidence and S polarization with high transmission at 527 nm and high reflection at 1054 nm[J]. Optical Engineering, 2016, 56(1): 011020. doi: 10.1117/1.OE.56.1.011020
    [13] SHI Y Y, XU J Q, LIU ZH, et al. Design and preparation of large aperture high reflective films composed entirely of dielectric materials for multi-band application[J]. Surface Technology, 2022, 51(4): 335-341. (in Chinese).
    [14] CHEN X Y, GUAN R Y, ZHANG SH L, et al. Study of multi-band infrared antireflection coatings on zinc selenide substrate[J]. Electro-Optic Technology Application, 2022, 37(6): 18-21,106. (in Chinese). doi: 10.3969/j.issn.1673-1255.2022.06.005
    [15] KIM D, KIM K M, HAN H, et al. Ti/TiO2/SiO2 multilayer thin films with enhanced spectral selectivity for optical narrow bandpass filters[J]. Scientific Reports, 2022, 12(1): 32. doi: 10.1038/s41598-021-03935-z
    [16] FAN H H, ZHANG Y G, SHEN W D, et al. Optical properties of Ta2O5 thin films fabricated by atomic layer deposition[J]. Acta Optica Sinica, 2011, 31(10): 1031001. (in Chinese). doi: 10.3788/AOS201131.1031001
    [17] SHANG P, XIONG SH M, LI L H, et al. Investigation on thermal stability of Ta2O5, TiO2 and Al2O3 coatings for application at high temperature[J]. Applied Surface Science, 2013, 285: 713-720. doi: 10.1016/j.apsusc.2013.08.115
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  48
  • HTML全文浏览量:  23
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-11
  • 录用日期:  2025-07-15
  • 网络出版日期:  2025-08-27

目录

    /

    返回文章
    返回