Volume 7 Issue 2
Mar.  2014
Turn off MathJax
Article Contents
GUAN Xiao-wei, WU Hao, DAI Dao-xin. Silicon hybrid surface plasmonic nano-optics-waveguide and integration devices[J]. Chinese Optics, 2014, 7(2): 181-195.
Citation: GUAN Xiao-wei, WU Hao, DAI Dao-xin. Silicon hybrid surface plasmonic nano-optics-waveguide and integration devices[J]. Chinese Optics, 2014, 7(2): 181-195.

Silicon hybrid surface plasmonic nano-optics-waveguide and integration devices

  • Received Date: 13 Nov 2013
  • Rev Recd Date: 12 Jan 2014
  • Publish Date: 25 Mar 2014
  • In this paper, our recent theoretical and experimental results on silicon hybrid nanoplasmonic waveguides and integrated devices are reviewed. First, we present several types of silicon hybrid nanoplasmonic waveguides, which enable the confinement of optical field within the lateral scale of 100 nm, as well as a ~102 m propagation distance. Second, several kinds of submicron photonic integrated devices like power splitters, ultra-compact polarization beam splitters and resonators are presented by using silicon hybrid nanoplasmonic waveguides. Finally, the coupling between silicon hybrid nanoplasmonic waveguides and silicon nanowires, as well as the loss compensation of silicon hybrid nanoplasmonic waveguides with gain mediums has also been discussed.

     

  • loading
  • [1] TSUCHIZAWA T, YAMADA K, FUKUDA H, et al.. Microphotonics devices based on silicon microfabrication technology[J]. IEEE J. Select. Top. Quant. Electron., 2005, 11(1):232-240. [2] ALMEIDA V R, XU Q, BARRIOS C A, et al.. Guiding and confining light in void nanostructure[J]. Opt. Lett., 2004, 29(11):1209-1211. [3] THYLEN L, QIU M, ANAND S. Photonic crystals-a step towards integrated circuits for photonics[J]. Chemphyschem, 2004, 5(9):1268-1283. [4] GOTO T, KATAGIRI Y, FUKUDA H, et al.. Propagation loss measurement for surface plasmon-polariton modes at metal waveguides on semiconductor substrates[J]. Appl. Phys. Lett., 2004, 84(6):852-854. [5] CHARBONNEAU R, LAHOUD N, MATTIUSSI G, et al.. Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons[J]. Opt. Express, 2005, 13(3):977-984. [6] ZIA R, SELKER M D, CATRYSSE P B, et al.. Geometries and materials for subwavelength surface plasmon modes[J]. J. Opt. Soc. Am. A., 2004, 21(12):2442-2446. [7] KUSUNOKI F, YOTSUYA T, TAKAHARA J, et al.. Propagation properties of guided waves in index-guided two-dimensional optical waveguides[J]. Appl. Phys. Lett., 2005, 86(21):211101-3. [8] PILE D F P, GRAMOTNEV D K. Plasmonic subwavelength waveguides:next to zero losses at sharp bends[J]. Opt. Lett., 2005, 30(10):1186-1188. [9] XIAO S S, LIU L, QIU M. Resonator channel drop filters in a plasmon-polaritons metal[J]. Opt. Express., 2006, 14(7):2932-2937. [10] WANG B, WANG G P. Surface plasmon polariton propagation in nanoscale metal gap waveguides[J]. Opt. Lett., 2004, 29(17):1992-1994. [11] TANAKA K, TANAKA M. Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide[J]. Appl. Phys. Lett., 2003, 82(8):1158-1160. [12] TANAKA K, TANAKA M, SUGIYAMA T. Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides[J]. Opt. Express, 2005, 13(1):256-266. [13] LIU L, HAN Z H, HE S L. Novel surface plasmon waveguide for high integration[J]. Opt. Exprress, 2005, 13(17):6645-6650. [14] VERONIS G, FAN S H. Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides[J]. Appl. Phys. Lett., 2005, 87(13):131102-3. [15] PILE D F P, GRAMOTNEV D K. Channel plasmon-polariton in a triangular groove on a metal surface[J]. Opt. Lett., 2004, 29(10):1069-1071. [16] BOZHEVOLNYI S I, VOLKOV V S, DEVAUX E, et al.. Channel plasmon subwavelength waveguide components including interferometers and ring resonators[J]. Nature, 2006, 440(7083):508-511. [17] 雷建国, 刘天航, 林景全, 等. 表面等离子体激元的若干新应用[J]. 中国光学与应用光学, 2010, 3(5):432-439. LEI J G, LIU T H, LIN J Q, et al.. New application of surface plasmon polaritons[J]. Chinese J. Optics and Applied Optics, 2010, 3(5):432-439.(in Chinese) [18] 陈泳屹, 佟存柱, 秦莉, 等. 表面等离子体纳米激光器技术及应用研究进展[J]. 中国光学, 2012, 5(5):453-463. CHEN Y Y, TONG C ZH, QIN L, et al.. Progress in surface plasmon polariton nano-laser technologies and applications[J]. Chinese Optics, 2012, 5(5):453-463.(in Chinese) [19] ZIA R, SCHULLER J A, CHANDRAN A, et al. Plasmonics:the next chip-scale technology[J]. Materials Today, 2006, 9(7):20-27. [20] GUO X, MA Y, WANG Y, et al.. Nanowire plasmonic waveguides, circuits and devices[J]. Laser Photonics Reviews, 2013, 6(7):855-881. [21] WANG W, YANG Q, FAN F, et al.. Light propagation in curved silver nanowire plasmonic waveguides[J]. Nano Lett., 2011, 11(4):1603-1608. [22] LUO H, LI Y, CUI H, et al.. Dielectric-loaded surface plasmon-polariton nanowaveguides fabricated by two-photon polymerization[J]. Appl. Phys. A., 2009, 97(3):709-712. [23] GUO X, QIU M, BAO J, et al.. Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits[J]. Nano Lett., 2009, 9(12):4515-4519. [24] OULTON R F, SORGER V J, GENOV D A, et al.. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation[J]. Nature Photon, 2008, 2(8):496-500. [25] OULTON R F, SORGER V J, ZENTGRAF T, et al.. Plasmon lasers at deep subwavelength scale[J]. Nature, 2009, 461(7264):629-632. [26] DAI D, YANG L, HE S. Ultrasmall thermally tunable microring resonator with a submicrometer heater on Si nanowires[J]. IEEE J. Lightwave Technol., 2008, 26(6):704-709. [27] DAI D, HE S. A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement[J]. Opt. Express, 2009, 17(19):16646-16653. [28] FUJⅡ M, LEUTHOLD J, FREUDE W. Dispersion relation and loss of subwavelength confined mode of metal-dielectric-gap optical waveguides[J]. IEEE Photon. Technol. Lett., 2009, 21(6):362-364. [29] ALAM M Z, MEIER J, AITCHISON J S, et al.. Super mode propagation in low index medium[C]. Photonic Applications Systems Technologies Conference. Optical Society of America, 2007. [30] ALAM M Z, MEIER J, AITCHISON J S, et al.. Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends[J]. Opt. Express, 2010, 18(12):12971-12979. [31] WANG Z, DAI D, SHI Y, et al.. Experimental realization of a low-loss nano-scale Si hybrid plasmonic waveguide[C]. Optical Fiber Communication Conference, OSA Technical Digest(CD), Optical Society of America, 2011. [32] ZHU S, LO G Q, KWONG D L. Experimental demonstration of vertical Cu-SiO2-Si hybrid plasmonic waveguide components on an SOI platform[J]. IEEE Photonics Technology Letters, 2012, 24(14):1224-1226. [33] KIM J T, JU J J, PARK S, et al.. Hybrid plasmonic waveguide for low-loss lightwave guiding[J]. Opt. Express, 18, 2010, 18(3):2808-2813. [34] HUANG Q, BAO F, HE S. Nonlocal effects in a hybrid plasmonic waveguide for nanoscale confinement[J]. Optics Express, 2013, 21(2):1430-1439. [35] DAI D, HE S. Low-loss hybrid plasmonic waveguide with double low-index nano-slots[J]. Opt. Express, 2010, 18(17):7958 16653. [36] KWON M S. Metal-insulator-silicon-insulator-metal waveguides compatible with standard CMOS technology[J]. Opt. Express, 2011, 19(9):8379-8393. [37] GOYKHMAN I, DESIATOV B, LEVY U. Experimental demonstration of locally oxidized hybrid silicon-plasmonic waveguide[J]. Appl. Phys. Lett., 2010, 97(14):141106-3. [38] KIM J T, JU J J, PARK S, et al.. Hybrid plasmonic waveguide for low-loss lightwave guiding[J]. Opt. Express, 2010, 18(3):2808-2813. [39] SONG Y, WANG J, LI Q, et al.. Broadband coupler between silicon waveguide and hybrid plasmonic waveguide[J]. Opt. Express, 2010, 18(12):13173-13179. [40] ZHANG X Y, HU A, WEN J Z, et al.. Numerical analysis of deep sub-wavelength integrated plasmonic devices based on semiconductor-insulator-metal strip waveguides[J]. Opt. Express, 2010, 18(18):18945-18959. [41] BIAN Y, ZHENG Z, ZHAO X, et al.. Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration[J]. Optics Express, 2009, 17(23):21320-21325. [42] CHEN L, LI X, WANG G. A hybrid long-range plasmonic waveguide with sub-wavelength confinement[J]. Opt. Communications, 2013, 291:400-404. [43] CHU H, LI E, BAI P, et al.. Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components[J]. Appl. Phys. Lett., 2010, 96(22):221103-3. [44] BIAN Y, ZHENG Z, LIU Y, et al.. Hybrid wedge plasmon polariton waveguide with good fabrication-error-tolerance for ultra-deep-subwavelength mode confinement[J]. Opt. Express, 2011, 19(23):22417-22422. [45] WU M, HAN Z, VAN V. Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale[J]. Opt. Express, 2010, 18(11):11729-11737. [46] ZHU S, LO G Q, KWONG D L. Components for silicon plasmonic nanocircuits based on horizontal Cu-SiO2-Si-SiO2-Cu nanoplasmonic waveguides[J]. Optics Express, 2012, 20(6):5867-5881. [47] LOU F, WANG Z, DAI D, et al.. Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides[J]. Appl. Phys. Lett., 2012, 100(24):241105-4. [48] GUAN X, CHEN P, WANG X, et al.. Ultrasmall directional coupler and disk-resonantor based on nano-scale silicon hybrid plasmonic waveguides[C]. Asia Communications and Photonics Conference, OSA Technical Digest(online), Optical Society of America, 2012. [49] WANG J, GUAN X, HE Y, et al.. Sub-μm2 power splitters by using silicon hybrid plasmonic waveguides[J]. Opt. Express, 2011, 19 (2):838-847. [50] SONG Y, WANG J, YAN M, et al.. Efficient coupling between dielectric and hybrid plasmonic waveguides by multimode interference power splitter[J]. J. Optics, 2011, 13(7):075002. [51] SONG Y, WANG J, YAN M, et al.. Subwavelength hybrid plasmonic nanodisk with high Q factor and Purcell factor[J]. J. Opt., 2011, 13(7):075001. [52] DAI D, SHI Y, HE S, et al.. Silicon hybrid plasmonic submicron-donut resonator with pure dielectric access waveguides[J]. Opt. Express, 2011, 19(24):23671-23682. [53] ZHU S, LO G Q, KWONG D L. Performance of ultracompact copper-capped silicon hybrid plasmonic waveguide-ring resonators at telecom wavelengths[J]. Optics Express, 2012, 20(14):15232-15246. [54] ALAM M Z, AITCHISON J S, MOJAHEDI M. Compact and silicon-on-insulator-compatible hybrid plasmonic TE-pass polarizer[J]. Opt. Lett., 2012, 37(1):55-57. [55] SUN X, ALAM M Z, WAGNER S J, et al.. Experimental demonstration of a hybrid plasmonic transverse electric pass polarizer for a silicon-on-insulator platform[J]. Opt. Lett., 2012, 37(23):4814-4816. [56] CHEE J, ZHU S, LO G Q. CMOS compatible polarization splitter using hybrid plasmonic waveguide[J]. Opt. Express, 2012, 20(23):25345-25355. [57] LOU F, DAI D, WOSINSKI L. Ultracompact polarization beam splitter based on a dielectric hybrid plasmonic dielectric coupler[J]. Opt. Lett., 2012, 37(16):3372-3374. [58] CASPERS J N, ALAM M Z, MOJAHEDI M. Compact hybrid plasmonic polarization rotator[J]. Opt. Lett., 2012, 37(22):4615-4617. [59] GUO L, HUO Y, HARRIS S J, et al.. Ultra-compact and low-loss polarization rotator based on asymmetric hybrid plasmonic waveguide[J]. IEEE Photon. Technol. Lett., 2013, 25(21):2081-2084. [60] ZHOU G, WANG T, PAN C, et al.. Design of plasmon waveguide with strong field confinement and low loss for nonlinearity enhancement[C]. Group IV Photonics(GFP), 2010 7th IEEE International Conference on, Beijing. IEEE, 2010: 69-71. [61] SUN X, ZHOU L, LI X, et al.. Design and analysis of a phase modulator based on a metal polymer silicon hybrid plasmonic waveguide[J]. Appl. Optics, 2011, 50(20):3428-3434. [62] ZHU S, LO G Q, KWONG D L. Theoretical investigation of silicon MOS-type plasmonic slot waveguide based MZI modulators[J]. Opt. Express, 2010, 18(26):27802-27819. [63] SUN R, DONG P, FENG N N, et al.. Horizontal single and multiple slot waveguides: optical transmission at lambda=1550 nm[J]. Opt. Express, 2007, 15(26):17967-17972. [64] SHENG Z, DAI D, HE S. Comparative study of losses in ultrasharp silicon-on-insulator nanowire bends[J]. Selected Topics in Quantum Electronics, IEEE J., 2009, 15(5):1406-1412. [65] TOURNOISA P, LAUDE V. Negative group velocities in metal-film optical waveguides[J]. Optics Communications, 1997, 137(1):41-45. [66] HONG J M, RYU H H, PARK S R, et al.. Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application[J]. IEEE Photon. Technol. Lett., 2003, 15(1):72 74. [67] YAMAZAKI T, AONO H, YAMAUCHI J, et al.. Coupled waveguide polarization splitter with slightly different core widths[J]. J. Lightwave Technol., 2008, 26(21):3528 3533. [68] AUGUSTIN L M, HANFOUG R, VAN DER TOL J J G M, et al.. A compact integrated polarization splitter/converter in InGaAsP-InP[J]. IEEE Photon. Technol. Lett., 2007, 19(17):1286-1288. [69] AO X, LIU L, LECH W, et al.. Polarization beam splitter based on a two-dimensional photonic crystal of pillar type[J]. Appl. Phys. Lett., 2006, 89(17):171115-3. [70] GUAN X, WU H, SHI Y, et al.. Ultracompact and broadband polarization beam splitter utilizing the evanescent coupling between a hybrid plasmonic waveguide and a silicon nanowire[J]. Opt. Lett., 2013, 38(16): 3005-3008. [71] LIANG D, FIORENTINO M, OKUMURA T, et al.. Electrically-pumped compact hybrid silicon microring lasers for optical interconnects[J]. Opt. Express, 2009, 17:20355-20364. [72] DONG P, FENG N N, FENG D, et al.. GHz-bandwidth optical filters based on high-order silicon ring resonators[J]. Opt. Express, 2010, 18(23):23784-23789. [73] XU Q, SCHMIDT B, PRADHAN S, et al.. Micrometre-scale silicon electro-optic modulator[J]. Nature, 2005, 435(7040):325-327. [74] WANG J, DAI D. Highly sensitive Si nanowire-based optical sensor using a Mach-Zehnder interferometer coupled microring[J]. Opt. Lett., 2010, 35(24):4229-4231. [75] DEKKER R, USECHAK N, FORST M, et al.. Ultrafast nonlinear all-optical processes in silicon-on-insulator waveguides[J]. J. Phys. D:Applied Physics, 2007, 40(14):R249-R271. [76] WANG X, LIN C Y, CHAKRAVARTY S, et al.. Effective in-device r33 of 735 pm/V on electro-optic polymer infiltrated silicon photonic crystal slot waveguides[J]. Opt. Lett., 2011, 36(6):882-884. [77] LI Q, SONG Y, ZHOU G, et al.. Asymmetric plasmonic-dielectric coupler with short coupling length, high extinction ratio, and low insertion loss[J]. Opt. Lett., 2010, 35(19):3153-3155. [78] DE LEON I, BERINI P. Amplification of long-range surface plasmons by a dipolar gain medium[J]. Nature Photon., 2010, 4(6):382-387. [79] NOGINOV M A, ZHU G, MAYY M, et al.. Stimulated emission of surface plasmon polaritons[J]. Phys. Rev. Lett., 2008, 101(22):226806-4. [80] AMBATI M, NAM S H, ULIN-AVILA E, et al.. Observation of stimulated emission of surface plasmon polaritons[J]. Nano Lett., 2008, 8(11):3998-4001. [81] VAN DEN HOVEN G N, KOPER R J I M, POLMAN A, et al.. Net optical gain at 1.53 mm in Er-doped Al2O3 waveguides on silicon[J]. Appl. Phys. Lett., 1996, 68(14):1886-1888. [82] GRANDIDIER J, DES FRANCS G C, MASSENOT S, et al.. Gain-assisted propagation in a plasmonic waveguide at telecom wavelength[J]. Nano Letters, 2009, 9(8):2935-2939. [83] NEZHAD M P, TETZ K, FAINMAN Y. Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides[J]. Opt. Express, 2004, 12(17):4072-4079. [84] GENOV D A, AMBATI M, ZHANG X. Surface plasmon amplification in planar metal films[J]. IEEE J. Quantum Electron., 2007, 43(11):1104-1108. [85] ALAM M Z, MEIER J, AITCHISON J S, et al.. Gain assisted surface plasmon polariton in quantum wells structures[J]. Opt. Express, 2007, 15(1):176-182. [86] PLUM E, FEDOTOV V A, KUO P, et al.. Towards the lasing spaser: controlling metamaterial optical response with semiconductor quantum dots[J]. Opt. Express, 2009, 17(10):8548-8551. [87] DAI D, SHI Y, HE S, et al.. Gain enhancement in a Si hybrid plasmonic nano-waveguide with a low-index or high-index gain medium[J]. Opt. Express, 2011, 19(14):12925-12936.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(2248) PDF downloads(762) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return