Volume 13 Issue 2
Apr.  2020
Turn off MathJax
Article Contents
DONG Lin-xiu, CHEN Zhi-hui, YANG Yi-biao, FEI Hong-ming, LIU Xin. Far-field range fluorescence enhancement by a hybrid metal-dielectric structure[J]. Chinese Optics, 2020, 13(2): 372-380. doi: 10.3788/CO.20201302.0372
Citation: DONG Lin-xiu, CHEN Zhi-hui, YANG Yi-biao, FEI Hong-ming, LIU Xin. Far-field range fluorescence enhancement by a hybrid metal-dielectric structure[J]. Chinese Optics, 2020, 13(2): 372-380. doi: 10.3788/CO.20201302.0372

Far-field range fluorescence enhancement by a hybrid metal-dielectric structure

doi: 10.3788/CO.20201302.0372
Funds:

the National Natural Science Foundation of China 11674239

the National Natural Science Foundation of China 61575139

the National Natural Science Foundation of China 61575138

Program for the Top Young Talents of Shanxi Province, China 

More Information
  • Author Bio:

    Lin-xiu Dong(1992—), Master Degree Candidate, Key Lab of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, College of Physics and Optoelectronics, Taiyuan University of Technology.Her research interests are on micro/nano-photonics.E-mail:1355175076@qq.com

    Zhi-hui Chen(1984—), PhD, professor, Key Lab of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, College of Physics and Optoelectronics, Taiyuan University of Technology.His research interests are on micro/nano-photonics.E-mail:huixu@126.com

  • Corresponding author: Zhi-hui Chen, E-mail:huixu@126.com
  • Received Date: 10 May 2019
  • Rev Recd Date: 17 May 2019
  • Publish Date: 01 Apr 2020
  • In order to improve the sensitivity of fluorescence biosensing and solve the near-field limitations to enhancement when the fluorescent nanoparticle is in the structure's far-field range, a large-scale hybrid metal-dielectric structure(Ag-Si structure) is proposed to enhance fluorescence in the far-field range.This hybrid metal-dielectric structure is different from previous metal-dielectric structures because it achieves fluorescence enhancement when the fluorescent nanoparticle is in the structure's far-field range due to scattering and interference. In this paper, the Ag-Si structure is investigated with respect to its excitation process and the emission process using the Finite-Difference Time-Domain (FDTD) method. In the excitation process, the intensity of the Ag-Si structure's fluorescence is higher than that of the bare glass structure and the electric field distribution of the Ag-Si structure is more uniform in the slit between the two pillars than it is in the metal structure (Ag structure). With this structure, fluorescence enhancement can be achieved and its detection of molecular motion behavior is more accurate. In the emission process, fluorescence enhancement in the Ag-Si structure is higher than that of the bare glass structure when the fluorescent nanoparticle is in the structure's far-field range. The mechanisms that achieve fluorescence enhancement in the Ag-Si structure are scattering and interference. Fluorescence is scattered upward by the silver film while the silver and silicon pillars on both sides of the structure simultaneously scatter the partial fluorescence, then the fluorescence interferes and propagates to the far-field to achieve fluorescence enhancement.Further advocating its use, an Ag-Si structure is simple to fabricate and integrate, allowing seamless application in biosensing.

     

  • loading
  • [1]
    李红博, 尹坤.基于量子点的荧光型太阳能聚光器[J].中国光学, 2018, 10(5):555-567. doi: 10.3788/CO.20171005.0555

    LI H B, YIN K. Quantum dots based luminescent solar concentrator[J]. Chinese Optics, 2018, 10(5):555-567. (in Chinese) doi: 10.3788/CO.20171005.0555
    [2]
    安娜, 卢睿, 马昊玥, 等. CdSe/CdS核壳量子点复合材料合成及其在白光发光二极管中的应用[J].发光学报, 2017, 38(8):1003-1009. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fgxb201708003

    AN N, LU R, MA H Y, et al.. Synthesis of CdSe/CdS core/shell quantum dots luminescent microspheres and their application for WLEDs[J]. Chinese Journal of Luminescence, 2017, 38(8):1003-1009. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fgxb201708003
    [3]
    GUZATOV D V, VASCHENKO S V, STANKEVICH V V, et al..Plasmonic enhancement of molecular fluorescence near silver nanoparticles:theory, modeling, and experiment[J]. The Journal of Physical Chemistry C, 2012, 116(19):10723-10733. doi: 10.1021/jp301598w
    [4]
    TOBIAS AK, JONES M. Metal-enhanced fluorescence from quantum dot-coupled gold nanoparticles[J]. The Journal of Physical Chemistry C, 2019, 123(2):1389-1397. doi: 10.1021/acs.jpcc.8b09108
    [5]
    HOANG T B, AKSELROD G M, ARGYROPOULOS C, et al..Ultrafast spontaneous emission source using plasmonic nanoantennas[J]. Nature Communications, 2015, 6:7788. doi: 10.1038/ncomms8788
    [6]
    SHEN H M, LU G W, ZHANG T Y, et al..Molecule fluorescence modified by a slit-based nanoantenna with dual gratings[J]. Journal of the Optical Society of America B, 2013, 30(9):2420-2426. doi: 10.1364/JOSAB.30.002420
    [7]
    ZHANG J, FU Y, CHOWDHURY M H, et al..Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer:coupling effect between metal particles[J]. Nano Letters, 2007, 7(7):2101-2107. doi: 10.1021/nl071084d
    [8]
    JIANG Y, WANG H Y, WANG H, et al..Surface plasmon enhanced fluorescence of dye molecules on metal grating films[J]. The Journal of Physical Chemistry C, 2011, 115(25):12636-12642. doi: 10.1021/jp203530e
    [9]
    KINKHABWALA A, YU Z F, FAN SH H, et al..Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna[J]. Nature Photonics, 2009, 3(11):654-657. doi: 10.1038/nphoton.2009.187
    [10]
    LU G W, XU J N, WEN T, et al..Hybrid metal-dielectric nano-aperture antenna for surface enhanced fluorescence[J]. Materials, 2018, 11(8):1435. doi: 10.3390/ma11081435
    [11]
    NGO Q M, HO Y L D, PUGH J R, et al..Enhanced UV/blue fluorescent sensing using metal-dielectric-metal aperture nanoantenna arrays[J]. Current Applied Physics, 2018, 18(7):793-798. doi: 10.1016/j.cap.2018.04.007
    [12]
    RAY K, BADUGU R, SZMACINSKI H, et al..Several hundred-fold enhanced fluorescence from single fluorophores assembled on silver nanoparticle-dielectric-metal substrate[J]. Chemical Communications, 2015, 51(81):15023-15026. doi: 10.1039/C5CC03581C
    [13]
    SUN S, LI R, LI M, et al..Hybrid mushroom nanoantenna for fluorescence enhancement by matching the stokes shift of the emitter[J]. The Journal of Physical Chemistry C, 2018, 122(26):14771-14780. doi: 10.1021/acs.jpcc.8b01978
    [14]
    LAKOWICZ J R, RAY K, CHOWDHURY M, et al..Plasmon-controlled fluorescence:a new paradigm in fluorescence spectroscopy[J]. Analyst, 2008, 133(10):1308-1346. doi: 10.1039/b802918k
    [15]
    SUN S, LI M, DU Q G, et al..Metal-dielectric hybrid dimer nanoantenna:coupling between surface plasmons and dielectric resonances for fluorescence enhancement[J]. The Journal of Physical Chemistry C, 2017, 121(23):12871-12884. doi: 10.1021/acs.jpcc.7b02593
    [16]
    DUTTA CHOUDHURY S, BADUGU R, NOWACZYK K, et al..Tuning fluorescence direction with plasmonic metal-dielectric-metal substrates[J]. The Journal of Physical Chemistry Letters, 2013, 4(1):227-232. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=333918e662e61172f12c612b8037afdb
    [17]
    BADUGU R, SZMACINSKI H, RAY K, et al..Metal-dielectric waveguides for high-efficiency coupled emission[J]. ACS Photonics, 2015, 2(7):810-815. doi: 10.1021/acsphotonics.5b00219
    [18]
    BOLIN F P, PREUSS L E, TAYLOR R C, et al..Refractive index of some mammalian tissues using a fiber optic cladding method[J]. Applied Optics, 1989, 28(12):2297-2303. doi: 10.1364/AO.28.002297
    [19]
    CHOWDHURY M H, RAY K, GRAY S K, et al..Aluminum nanoparticles as substrates for metal-enhanced fluorescence in the ultraviolet for the label-free detection of biomolecules[J]. Analytical Chemistry, 2009, 81(4):1397-1403. doi: 10.1021/ac802118s
    [20]
    CHEN ZH H, LIANG L, WANG Y, et al..Spatial remote luminescence enhancement by a half-cylindrical Au groove[J]. Journal of Materials Chemistry C, 2016, 4(47):11321-11327. doi: 10.1039/C6TC04074H
    [21]
    CHEN ZH H, SHI H, WANG Y, et al..Sharp convex gold grooves for fluorescence enhancement in micro/nano fluidic biosensing[J]. Journal of Materials Chemistry B, 2017, 5(44):8839-8844. doi: 10.1039/C7TB02422C
    [22]
    LIU F F, YU Y, LIN B X, et al..Visualization of hormone binding proteins in vivo based on Mn-doped CdTeQDs[J]. SpectrochimicaActa Part A:Molecular and Biomolecular Spectroscopy, 2014, 131:9-16. doi: 10.1016/j.saa.2014.04.066
    [23]
    WRENGER J P. Numerical reflection from FDTD-PMLs:a comparison of the split PML with the unsplit and CFS PMLs[J]. IEEE Transactions on Antennas and Propagation, 2002, 50(3):258-265. doi: 10.1109/8.999615
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article views(1659) PDF downloads(101) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return