Volume 13 Issue 1
Feb.  2020
Turn off MathJax
Article Contents
LIU Qun, LIU Chong, ZHU Xiao-lei, ZHOU Yu-di, LE Cheng-feng, BAI Jian, HE Yan, BI De-cang, LIU Dong. Analysis of the optimal operating wavelength of spaceborne oceanic lidar[J]. Chinese Optics, 2020, 13(1): 148-155. doi: 10.3788/CO.20201301.0148
Citation: LIU Qun, LIU Chong, ZHU Xiao-lei, ZHOU Yu-di, LE Cheng-feng, BAI Jian, HE Yan, BI De-cang, LIU Dong. Analysis of the optimal operating wavelength of spaceborne oceanic lidar[J]. Chinese Optics, 2020, 13(1): 148-155. doi: 10.3788/CO.20201301.0148

Analysis of the optimal operating wavelength of spaceborne oceanic lidar

doi: 10.3788/CO.20201301.0148
Funds:

Supported by the National Key Research and Development Program of China No.2016YFC1400900

National Natural Science Foundation of China No.41775023

More Information
  • Corresponding author: LIU Chong, E-mail:chongliu78@hotmail.com
  • Received Date: 26 Mar 2019
  • Rev Recd Date: 30 Apr 2019
  • Publish Date: 01 Feb 2020
  • Spaceborne lidar is a promising tool for vertical ocean profile detection, which has attracted extensive attention in oceanic optical remote sensing technology. It is essential to evaluate the operating wavelength of spaceborne oceanic lidar to ensure that it is effective. In this paper, the optimal operating wavelength of spaceborne oceanic lidar for the purposes of global ocean detection was analyzed in terms of detection depth and signal-to-noise ratio (SNR). The global distribution of ocean detection depths and the corresponding wavelengths were estimated by using the oceanic optical properties data from MODIS. The SNR was evaluated based on the characteristics of the solar Fraunhofer line. It was found that ocean water with an optimal wavelength of 488 nm accounts for about 70% of the global ocean area and more than 95% of the global ocean area has a detected depth deeper than 0.8 times the depth of the euphotic layer. Furthermore, 70% of background light can be suppressed with a filter against the 0.1 nm bandwidth at the 486.134 nm solar Fraunhofer line and the SNR can be increased by about 5.0% compared to that of the 488 nm. In conclusion, working at 486.134 nm can effectively improve the detection depth and the SNR, so it is the optimal operating wavelength of spaceborne oceanic lidar.

     

  • loading
  • [1]
    BEHRENFELD M J, O'MALLEY R T, SIEGEL D A, et al.. Climate-driven trends in contemporary ocean productivity[J]. Nature, 2006, 444(7120): 752-755. doi: 10.1038/nature05317
    [2]
    MCCLAIN C R. A decade of satellite ocean color observations[J]. Annual Review of Marine Science, 2009, 1: 19-42. doi: 10.1146/annurev.marine.010908.163650
    [3]
    HOSTETLER C A, BEHRENFELD M J, HU Y X, et al.. Spaceborne lidar in the study of marine systems[J]. Annual Review of Marine Science, 2017, 10: 121-147. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3711114ee87babe43e8a198bb3401eb0
    [4]
    BEHRENFELD M J, HU Y X, HOSTETLER C A, et al.. Space-based lidar measurements of global ocean carbon stocks[J]. Geophysical Research Letters, 2013, 40(16): 4355-4360. doi: 10.1002/grl.50816
    [5]
    BEHRENFELD M J, HU Y X, O'MALLEY R T, et al.. Annual boom-bust cycles of polar phytoplankton biomass revealed by space-based lidar[J]. Nature Geoscience , 2017, 10(2): 118-122. doi: 10.1038/ngeo2861
    [6]
    LIU Q, LIU D, BAI J, et al.. Relationship between the effective attenuation coefficient of spaceborne lidar signal and the IOPs of seawater[J]. Optics Express, 2018, 26(23): 30278-30291. doi: 10.1364/OE.26.030278
    [7]
    海洋国家实验室 . 海洋国家实验室组织召开“观澜号”海洋科学卫星总体设计及其遥感应用关键技术研发项目论证会[EB/OL]. (2017-11-17). http://www.qnlm.ac/page?a=5&b=3&c=63&p=detail.

    The Pilot National Laboratory for Marine Science and Technology. The Pilot National Laboratory for marine science and technology held the demonstrating meeting on the project of design of "GuanLan" marine science satellite and key technologies for remote sensing applications[EB/OL]. (2017-11-17). http://www.qnlm.ac/page?a=5&b=3&c=63&p=detail. (in Chinese)
    [8]
    SCHULIEN J A, BEHRENFELD M J, HAIR J W, et al.. Vertically- resolved phytoplankton carbon and net primary production from a high spectral resolution lidar[J]. Optics Express, 2017, 25(12): 13577-13587. doi: 10.1364/OE.25.013577
    [9]
    LEE J H, CHURNSIDE J H, MARCHBANKS R D, et al.. Oceanographic lidar profiles compared with estimates from in situ optical measurements[J]. Applied Optics, 2013, 52(4): 786-794. doi: 10.1364/AO.52.000786
    [10]
    周雨迪, 刘东, 徐沛拓, 等.偏振激光雷达探测大气-水体光学参数廓线[J].遥感学报, 2019, 23(1): 108-115.

    ZHOU Y D, LIU D, XU P T, et al.. Detecting atmospheric-water optical property profiles with a polarized lidar[J]. Journal of Remote Sensing, 2019, 23(1): 108-115. (in Chinese)
    [11]
    刘秉义, 李瑞琦, 杨倩, 等.蓝绿光星载海洋激光雷达全球探测深度估算[J].红外与激光工程, 2019, 48(1): 117-122. http://d.old.wanfangdata.com.cn/Periodical/hwyjggc201901017

    LIU B Y, LI R Q, YANG Q, et al.. Estimation of global detection depth of spaceborne oceanographic lidar in blue-green spectral region[J]. Infrared and Laser Engineering, 2019, 48(1): 117-122. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hwyjggc201901017
    [12]
    CHURNSIDE J H. Review of profiling oceanographic lidar[J]. Optical Engineering, 2014, 53(5): 051405. http://cn.bing.com/academic/profile?id=073b0f485a4557634458ee899842194a&encoded=0&v=paper_preview&mkt=zh-cn
    [13]
    LIU ZH Y, VOELGER P, SUGIMOTO N. Simulations of the observation of clouds and aerosols with the experimental lidar in space equipment system[J]. Applied Optics, 2000, 39(18): 3120-3137. doi: 10.1364/AO.39.003120
    [14]
    GORDON H R. Interpretation of airborne oceanic lidar: effects of multiple scattering[J]. Applied Optics, 1982, 21(16): 2996-3001. doi: 10.1364/AO.21.002996
    [15]
    LEE Z P, DARECKI M, CARDER K L, et al.. Diffuse attenuation coefficient of downwelling irradiance: an evaluation of remote sensing methods[J]. Journal of Geophysical Research: Oceans, 2005, 110(C2): C02017. doi: 10.1029-2004JC002573/
    [16]
    CULLEN J J. Subsurface chlorophyll maximum layers: enduring enigma or mystery solved?[J]. Annual Review of Marine Science, 2015, 7: 207-239. doi: 10.1146/annurev-marine-010213-135111
    [17]
    MOREL A, BERTHON J F. Surface pigments, algal biomass profiles, and potential production of the euphotic layer: relationships reinvestigated in view of remote-sensing applications[J]. Limnology and Oceanography, 1989, 34(8): 1545-1562. doi: 10.4319/lo.1989.34.8.1545
    [18]
    LEE Z, WEIDEMANN A, KINDLE J, et al.. Euphotic zone depth: its derivation and implication to ocean-color remote sensing[J]. Journal of Geophysical Research: Oceans, 2007, 112(C3): C03009. http://cn.bing.com/academic/profile?id=1565cabd32401c16cd0b5ec096002921&encoded=0&v=paper_preview&mkt=zh-cn
    [19]
    MA J, LU T T, ZHU X L, et al.. Highly efficient H-β Fraunhofer line optical parametric oscillator pumped by a single-frequency 355 nm laser[J]. Chinese Optics Letters, 2018, 16(8): 081901. doi: 10.3788/COL201816.081901
    [20]
    CHURNSIDE J H, WILSON J J, OLIVER C W. Evaluation of the capability of the experimental oceanographic fisheries lidar (FLOE) for tuna detection in the eastern tropical pacific[R]. Boulder: Environmental Technology Laboratory, 1998.
    [21]
    MOBLEY C D. Light and Water: Radiative Transfer in Natural Waters[M]. San Diego: Academic Press, 1994.
    [22]
    GABRIEL C, KHALIGHI M A, BOURENNANE S, et al.. Monte-carlo-based channel characterization for underwater optical communication systems[J]. Journal of Optical Communications and Networking, 2013, 5(1): 1-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d2a660933f65f6aa98df011d8d4518a1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article views(1755) PDF downloads(116) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return