Volume 13 Issue 1
Feb.  2020
Turn off MathJax
Article Contents
LIU Yi, ZHAO Yi-wu, NI Xiao-long, Lou Yan, JIANG Hui-lin, LIU Zhi. Channel reciprocity of bidirectional atmospheric laser transmission channels[J]. Chinese Optics, 2020, 13(1): 140-147. doi: 10.3788/CO.20201301.0140
Citation: LIU Yi, ZHAO Yi-wu, NI Xiao-long, Lou Yan, JIANG Hui-lin, LIU Zhi. Channel reciprocity of bidirectional atmospheric laser transmission channels[J]. Chinese Optics, 2020, 13(1): 140-147. doi: 10.3788/CO.20201301.0140

Channel reciprocity of bidirectional atmospheric laser transmission channels

doi: 10.3788/CO.20201301.0140
Funds:

National Natural Science Foundation of China 61475025

More Information
  • Corresponding author: LIU Zhi, E-mail:liuzhiqi@cust.edu.cn
  • Received Date: 27 Jun 2019
  • Rev Recd Date: 20 Aug 2019
  • Publish Date: 01 Feb 2020
  • In atmospheric channel laser transmissions, atmospheric turbulence has a large influence on system performance, reducing its transmission rate and increasing its bit error rate. In a bidirectional free-space laser transmission link with channel reciprocity, as the change in optical signal intensity at the two terminals is correlated, the Channel State Information (CSI) can be obtained at the transmitter and used to compensate the channel influence, thus improves the transmission rate. In this paper, under weakly fluctuating conditions, according to Rytov approximation, the relationship between the correlation coefficient of the spot signal received by plane wave bidirectional transmission link and the transmission path is deduced, and its analytical expression is derived. The results show that the intensity of the optical signal at the receiving end of the bidirectional free-space laser transmission link is related to the transmission end and that the correlation coefficient is related to the location of the transmission path. A bidirectional coaxial laser transmission system is further established and an external field test is performed. The real-time change trend of the intensity of the speckle signal at both receivers is the same. Therefore, the atmospheric channel of the bidirectional free-space laser transmission link is reciprocal. The conclusion of this paper is of great significance for realizing high-rate and low bit error rate transmission in atmospheric channels.

     

  • loading
  • [1]
    任伟.空间激光通信研究现状及发展趋势[J].中国新通信, 2017, 19(24):5-7. doi: 10.3969/j.issn.1673-4866.2017.24.004

    REN W. Research status and development trend of space laser communication[J]. China New Telecommunications, 2017, 19(24):5-7. (in Chinese) doi: 10.3969/j.issn.1673-4866.2017.24.004
    [2]
    任建迎, 孙华燕, 张来线, 等.空间激光通信发展现状及组网新方法[J].激光与红外, 2019, 49(2):143-150. doi: 10.3969/j.issn.1001-5078.2019.02.003

    REN J Y, SUN H Y, ZHANG L X, et al.. Development status of space laser communication and new method of networking[J]. Laser & Infrared, 2019, 49(2):143-150. (in Chinese) doi: 10.3969/j.issn.1001-5078.2019.02.003
    [3]
    MECHERLE G S, HORSTEIN M. Comparison of radio frequency and optical architectures for deep-space communications via a relay satellite[J]. Proceedings of SPIE, 1994, 2123:36-53. doi: 10.1117/12.184681
    [4]
    MORTAZY E, MORAVVEJ-FARSHI M K. A new model for optical communication systems[J]. Optical Fiber Technology, 2005, 11(1):69-80. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_ded487cdf291abe851837e62b564a2e0
    [5]
    PURYEAR A L, SHAPIRO J H, PARENTI R R. Reciprocity-enhanced optical communication through atmospheric turbulence-part Ⅱ:communication architectures and performance[J]. Journal of Optical Communications and Networking, 2013, 5(8):888-900. doi: 10.1364/JOCN.5.000888
    [6]
    陈绍娟, 向劲松, 李晓双.星地激光通信中多光束发射的最优发送[J].现代电信科技, 2013, 43(10):43-48. doi: 10.3969/j.issn.1002-5316.2013.10.009

    CHEN SH J, XIANG J S, LI X SH. Transmitter optimization in multi-beam transmitter for satellite-ground laser communication[J]. Modern Science & Technology of Telecommunications, 2013, 43(10):43-48. (in Chinese) doi: 10.3969/j.issn.1002-5316.2013.10.009
    [7]
    PARENTI R R, ROTH J M, GRECO J A, et al.. Channel reciprocity in single-mode free-space optical links[C]. Proceedings of 2012 IEEE Photonics Society Summer Topical Meeting Series, IEEE, 2012: 113-114. https://ieeexplore.ieee.org/document/6280751/
    [8]
    PARENTI R R, ROTH J M, SHAPIRO J H, et al.. Experimental observations of channel reciprocity in single-mode free-space optical links[J]. Optics Express, 2012, 20(19):21635-21644. doi: 10.1364/OE.20.021635
    [9]
    KOLKA Z, BIOLKOVA V, WILFERT O, et al.. Simulation model of correlated FSO channels[C]. Proceedings of 2015 Conference on Microwave Techniques, IEEE, 2015: 1-4. https://ieeexplore.ieee.org/document/7120328
    [10]
    ANDRÉP S, PINTO A N. Chromatic dispersion fluctuations in optical fibers due to temperature and its effects in high-speed optical communication systems[J]. Optics Communications, 2005, 246(4-6):303-311. doi: 10.1016/j.optcom.2004.11.017
    [11]
    SHAPIRO J H. Reciprocity of the turbulent atmosphere[J]. Journal of the Optical Society of America, 1971, 61(4):492-495. doi: 10.1364/JOSA.61.000492
    [12]
    GIGGENBACH D, COWLEY W, GRANT K, et al.. Experimental verification of the limits of optical channel intensity reciprocity[J]. Applied Optics, 2012, 51(16):3145-3452. doi: 10.1364/AO.51.003145
    [13]
    PARTHASARATHY S, GIGGENBACH D, BARRIOS R, et al.. Simulative verification of channel reciprocity in free-space optical inter-HAP links[C]. Proceedings of 2017 IEEE International Conference on Space Optical Systems and Applications, IEEE, 2017: 154-159.
    [14]
    王孛, 施鹏, 赵生妹.大气湍流下自由光通信信道模型的数值仿真[J].南京邮电大学学报(自然科学版), 2012, 32(4):32-37. doi: 10.3969/j.issn.1673-5439.2012.04.007

    WANG B, SHI P, ZHAO SH M. Numerical simulations of FSO channel through atmosphere turbulence[J]. Journal of Nanjing University of Posts and Telecommunications (Natural Science), 2012, 32(4):32-37. (in Chinese) doi: 10.3969/j.issn.1673-5439.2012.04.007
    [15]
    MINET J, VORONTSOV M A, POLNAU E, et al.. Enhanced correlation of received power-signal fluctuations in bidirectional optical links[J]. Journal of Optics, 2013, 15(2):022401. doi: 10.1088/2040-8978/15/2/022401
    [16]
    CHEN CH Y, YANG H M. Correlation between light-flux fluctuations of two counter-propagating waves in weak atmospheric turbulence[J]. Optics Express, 2017, 25(11):12779-12795. doi: 10.1364/OE.25.012779
    [17]
    PERLOT N, GIGGENBACH D. Scintillation correlation between forward and return spherical waves[J]. Applied Optics, 2012, 51(15):2888-2893. doi: 10.1364/AO.51.002888
    [18]
    TATARSKII V I. Wave Propagation in A Turbulent Medium[M]. New York:McGraw-Hill, 1961.
    [19]
    RYTOV S M, KRAVTSOV Y A, TATARSKII V I. Principles of Statistical Radiophysics:Wave Propagation Through Random Media[M]. Berlin:Springer-Verlag, 1989.
    [20]
    饶瑞中.现代大气光学[M].北京:科学出版社, 2012.

    RAO R ZH. Modern Atmospheric Optics[M]. Beijing:Science Press, 2012. (in Chinese)
    [21]
    KHALIGHI M A, SCHWARTZ N, BOURENNANE S, et al.. Fading reduction by aperture averaging and spatial diversity in optical wireless systems[J]. IEEE/OSA Journal of Optical Communications and Networking, 2009, 1(6):580-593. doi: 10.1364/JOCN.1.000580
    [22]
    张逸新, 迟泽英.光波在大气中的传输与成像[M].北京:国防工业出版社, 2001.

    ZHANG Y X, CHI Z Y. Laser Wave Propagation and Imaging Throng Atmosphere[M]. Beijing:National Defense Industry Press, 2001. (in Chinese)
    [23]
    ISHIMARU A. Wave Propagation and Scattering in Random Media[M]. New York:IEEE Press, 1977.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article views(1419) PDF downloads(50) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return