Volume 13 Issue 1
Feb.  2020
Turn off MathJax
Article Contents
LUO Yi, LIANG Zhong-zhu, MENG De-jia, TAO Jin, LIANG Jing-qiu, QIN Zheng, HOU En-Zhu, QIN Yu-xin, LV Jing-guang, ZHANG Yu-hao. Study on long wavelength infrared broadband metasurface absorber via hybrid resonant mode[J]. Chinese Optics, 2020, 13(1): 131-139. doi: 10.3788/CO.20201301.0131
Citation: LUO Yi, LIANG Zhong-zhu, MENG De-jia, TAO Jin, LIANG Jing-qiu, QIN Zheng, HOU En-Zhu, QIN Yu-xin, LV Jing-guang, ZHANG Yu-hao. Study on long wavelength infrared broadband metasurface absorber via hybrid resonant mode[J]. Chinese Optics, 2020, 13(1): 131-139. doi: 10.3788/CO.20201301.0131

Study on long wavelength infrared broadband metasurface absorber via hybrid resonant mode

doi: 10.3788/CO.20201301.0131
Funds:  Supported by the National Natural Science Foundation of China (No.61735018, No.61376122, No.61805242); Excellent Member Fund of Youth Innovation Promotion Association of CAS (No.2014193); Scientific and Technological Development Project of Jilin province (No.20170204077GX); Leading Talents and Team Project of Scientific and Technological Innovation for Young and Middle-aged Groups in Jilin Province(No.20190101012JH); Independent fund of State Kay Laboratory of Applied Optics; Overseas Students Science and Technology Innovation and Entrepreneurship Projects; Project of CIOMP-Duke Collaborative Research; Project of CIOMP-Fudan University Collaborative Research
More Information
  • Corresponding author: LIANG Zhong-zhu, E-mail:liangzz@ciomp.ac.cn
  • Received Date: 28 Mar 2019
  • Rev Recd Date: 23 Apr 2019
  • Publish Date: 01 Feb 2020
  • In order to meet the requirements of integration of infrared devices and the wideband absorption of infrared light, a novel ultra-broadband, high-absorbance and polarization-independent metamaterial absorber working in the long-wave infrared region (8~14 μm) is designed.By inserting a dielectric layer around the top metal of a metal-dielectric-metal metamaterial absorber to form a metasurface, the resonance intensity and absorption bandwidth can be improved.The structure has an average absorptivity greater than 90% in the range of 8.0 μm to 13.6 μm, covering most of the long-wave infrared atmospheric window bands, which is of great significance to infrared devices. The results indicate that the excitation of Propagating Surface Plasmon (PSP) modes and embedded cavity modes generated by the combination of dielectric-loaded surface plasmon polaritons waveguide and cavity modes contribute to broadband absorption.Moreover, the resonant wavelength of the resonance mode can be tuned by relevant parameters.The results of this paper provide a reference for the design of tunable broadband long-wavelength infrared(LWIR) absorbers. It is suggested that this design method can be extended to the medium wavelength infrared band, the very long-wavelength infrared band and others.

     

  • loading
  • [1]
    梁秋群.金属纳米结构表面等离激元杂化和吸收特性的研究[D].北京: 中国科学院大学, 2015. http://www.irgrid.ac.cn/handle/1471x/1004792

    LIANG Q Q. Study on plasmon hybridization and optical absorption properties of metallic nanostructures[D]. Beijing: University of Chinese Academy of Sciences, 2015. (in Chinese) http://www.irgrid.ac.cn/handle/1471x/1004792
    [2]
    曹水艳.表面等离子体结构聚焦和吸收特性的研究[D].北京: 中国科学院大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-80139-1014218233.htm

    CAO SH Y. Study on the property of focusing and absorption of plasmonic nanostructures[D]. Beijing: University of Chinese Academy of Sciences, 2013. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-80139-1014218233.htm
    [3]
    陈超瑜, 马妍, 方群.微流控器官芯片的研究进展[J].分析化学, 2019, 47(11):1711-1720. http://d.old.wanfangdata.com.cn/Periodical/fxhx201911001

    CHEN CH Y, MA Y, FANG Q. Advances in microfluidic organ-on-a-chip systems[J]. Chinese Journal of Analytical Chemistry, 2019, 47(11):1711-1720. http://d.old.wanfangdata.com.cn/Periodical/fxhx201911001
    [4]
    范一强, 王洪亮, 高克鑫, 等.模块化微流控系统与应用[J].分析化学, 2018, 46(12):1863-1871. doi: 10.11895/j.issn.0253-3820.181552

    FAN Y Q, WANG H L, GAO K X, LIU J J, et al.. Applications of modular microfluidics technology[J]. Chinese Journal of Analytical Chemistry, 2018, 46(12):1863-1871. doi: 10.11895/j.issn.0253-3820.181552
    [5]
    FANG X, MACDONALD K F, ZHELUDEV N I. Controlling light with light using coherent metadevices:all-optical transistor, summator and invertor[J]. Light:Science & Applications, 2015, 4, 292. http://cn.bing.com/academic/profile?id=16eab71e1f25f2ab335dcbb0754a012d&encoded=0&v=paper_preview&mkt=zh-cn
    [6]
    LANDY N I, SAJUYIGBE S, MOCK J J, et al.. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20):207402. doi: 10.1103/PhysRevLett.100.207402
    [7]
    GRANT J, MA Y, SAHA S, et al.. Polarization insensitive, broadband terahertz metamaterial absorber[J]. Optics Letters, 2011, 36(17):3476-3478. doi: 10.1364/OL.36.003476
    [8]
    王月, 安西涛, 任伟, 等.纳米金膜及金壳表面局域等离激元对上转换荧光波长的选择调控[J].发光学报, 2019, 40(6):743-750. http://d.old.wanfangdata.com.cn/Periodical/fgxb201906006

    WANGY, AN X T, REN W, et al.. Wavelength Dependent Modulation of Upconversion Luminescence via Localized Surface Plasmon Resonance of Gold Nanofilm and Nanoshell[J].Chinese Journal of Luminescence, 2019, 40(6):743-750. http://d.old.wanfangdata.com.cn/Periodical/fgxb201906006
    [9]
    李雪, 张然, 袁新芳, 等.基于金纳米棒@二氧化硅表面等离子体共振增强的有机太阳能电池[J].发光学报, 2018, 39(11):1579-1583. http://d.old.wanfangdata.com.cn/Periodical/fgxb201811013

    LI X, ZHANG R, YUAN X F, et al.. Surface Plasmon Resonance-enhanced Organic Solar Cells Based on Au Nanorods@SiO2 Core-shell Structures[J].Chinese Journal of Luminescence, 2018, 39(11):1579-1583. http://d.old.wanfangdata.com.cn/Periodical/fgxb201811013
    [10]
    安西涛, 王月, 牟佳佳, 等.超薄金壳包覆NaYF4:Yb, Er@SiO2纳米结构的可控合成与表面增强上转换荧光[J].发光学报, 2018, 39(11):1505-1512. http://d.old.wanfangdata.com.cn/Periodical/fgxb201811003

    AN X T, WANG Y, MOU J J, et al..Controllable Synthesis and Surface-enhanced Upconversion Luminescence of Ultra-thin Gold Shell Coated NaYF4:Yb, Er@SiO2 Nanostructures[J].Chinese Journal of Luminescence, 2018, 39(11):1505-1512. http://d.old.wanfangdata.com.cn/Periodical/fgxb201811003
    [11]
    MAIER T, BRVCKL H. Wavelength-tunable microbolometers with metamaterial absorbers[J]. Optics Letters, 2009, 34(19):3012-3014. doi: 10.1364/OL.34.003012
    [12]
    MAIER T, BRUECKL H. Multispectral microbolometers for the midinfrared[J]. Optics Letters, 2010, 35(22):3766-3768. doi: 10.1364/OL.35.003766
    [13]
    MA W, JIA D L, WEN Y ZH, et al.. Diode-based microbolometer with performance enhanced by broadband metamaterial absorber[J]. Optics Letters, 2016, 41(13):2974-2977. doi: 10.1364/OL.41.002974
    [14]
    LIU X L, TYLER T, STARR T, et al.. Taming the blackbody with infrared metamaterials as selective thermal emitters[J]. Physical Review Letters, 2011, 107(4):045901. doi: 10.1103/PhysRevLett.107.045901
    [15]
    MA W, WEN Y ZH, YU X M, et al.. Broadband metamaterial absorber at mid-infrared using multiplexed cross resonators[J]. Optics Express, 2013, 21(25):30724-30730. doi: 10.1364/OE.21.030724
    [16]
    ADOMANIS B M, WATTS C M, KOIRALA M, et al.. Bi-layer metamaterials as fully functional near-perfect infrared absorbers[J]. Applied Physics Letters, 2015, 107(2):021107. doi: 10.1063/1.4926416
    [17]
    GUO W L, LIU Y X, HAN T CH. Ultra-broadband infrared metasurface absorber[J]. Optics Express, 2016, 24(18):20586-20592. doi: 10.1364/OE.24.020586
    [18]
    DAI SH W, ZHAO D, LI Q, et al.. Double-sided polarization-independent plasmonic absorber at near-infrared region[J]. Optics Express, 2013, 21(11):13125-13133. doi: 10.1364/OE.21.013125
    [19]
    HUBAREVICH A, KUKHTA A, DEMIR H V, et al.. Ultra-thin broadband nanostructured insulator-metal-insulator-metal plasmonic light absorber[J]. Optics Express, 2015, 23(8):9753-9761. doi: 10.1364/OE.23.009753
    [20]
    WU SH L, GU Y, YE Y, et al.. Omnidirectional broadband metasurface absorber operating in visible to near-infrared regime[J]. Optics Express, 2018, 26(17):21479-21489. doi: 10.1364/OE.26.021479
    [21]
    HAN Q, FU Y Q, JIN L, et al.. Germanium nanopyramid arrays showing near-100% absorption in the visible regime[J]. Nano Research, 2015, 8(7):2216-2222. doi: 10.1007/s12274-015-0731-0
    [22]
    PALIK E D. Handbook of Optical Constants of Solids. Volume III[M]. New York:Academic Press, 1998.
    [23]
    HAI L D, QUIV D, TUNG N H, et al.. Conductive polymer for ultra-broadband, wide-angle, and polarization-insensitive metamaterial perfect absorber[J]. Optics Express, 2018, 26(25):33253-33262. doi: 10.1364/OE.26.033253
    [24]
    CHEN H T. Interference theory of metamaterial perfect absorbers[J]. Optics Express, 2012, 20(7):7165-7172. doi: 10.1364/OE.20.007165
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article views(1908) PDF downloads(115) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return