Volume 12 Issue 6
Dec.  2019
Turn off MathJax
Article Contents
LI Wen-li, YU Yi-ting. Research progresses of planar super-oscillatory lenses for practical applications[J]. Chinese Optics, 2019, 12(6): 1155-1178. doi: 10.3788/CO.20191206.1155
Citation: LI Wen-li, YU Yi-ting. Research progresses of planar super-oscillatory lenses for practical applications[J]. Chinese Optics, 2019, 12(6): 1155-1178. doi: 10.3788/CO.20191206.1155

Research progresses of planar super-oscillatory lenses for practical applications

doi: 10.3788/CO.20191206.1155
Funds:

National Natural Science Foundation of China 51622509

the Joint Fund for the Equipment Pre-research of Space Science and Technology 6141B06240205

the Strategic Initiative Project 

More Information
  • Corresponding author: YU Yi-ting, E-mail:yyt@nwpu.edu.cn
  • Received Date: 29 Jan 2019
  • Rev Recd Date: 06 Mar 2019
  • Publish Date: 01 Dec 2019
  • Due to the diffraction limit, it is difficult to achieve far-field super-resolution focusing and imaging for traditional optical systems. The appearance of planar superlenses based on the super-oscillation principle provides a possible solution to the problem. It can achieve far-field super-resolution focus without using evanescent waves. By precisely adjusting the diffraction and interference effects among the diffractive elements, electric field oscillation that is higher than the highest spatial frequency of the system can be measured in the local area of the focal plane, and thus the transverse and axial sizes of the diffractive focal spot can be precisely controlled. Compared with conventional optical lenses, planar Super-Oscillatory Lenses(SOLs) hold advantages for their arbitrary control over the optical field, large degree of freedom in design and easy integration with optical systems. Due to the above-mentioned reasons, SOLs have attracted extensive attention from researchers in the fields of diffractive optics and micro-nano optics. In this paper, concerning practical applications, the research state-of-the-art and application scenarios of planar SOLs are presented and discussed. Finally, the system's problems and its corresponding solutions are also described.

     

  • loading
  • [1]
    YAN B, WANG Z B, PARKER A L, et al.. Superlensing microscope objective lens[J]. Applied Optics, 2017, 56(11):3142-3147. doi: 10.1364/AO.56.003142
    [2]
    SRITURAVANICH W, PAN L, WANG Y, et al.. Flying plasmonic lens in the near field for high-speed nanolithography[J]. Nature Nanotechnology, 2008, 3(12):733-737. doi: 10.1038/nnano.2008.303
    [3]
    NI X J, ISHII S, KILDISHEV A V, et al.. Ultra-thin, planar, Babinet-inverted plasmonic metalenses[J]. Light:Science & Applications, 2013, 2(4):e72.
    [4]
    HU J T, LIU CH H, REN X CH, et al.. Plasmonic lattice lenses for multiwavelength achromatic focusing[J]. ACS Nano, 2016, 10(11):10275-10282. doi: 10.1021/acsnano.6b05855
    [5]
    WILLIAMS C, MONTELONGO Y, WILKINSON T D. Plasmonic metalens for narrowband dual-focus imaging[J]. Advanced Optical Materials, 2017, 5(24):1700811. doi: 10.1002/adom.201700811
    [6]
    ABBE E. A contribution to the theory of the microscope and the nature of microscopic vision[C]. Proceedings of Bristol Naturalists' Society, Williams & Northgate, 1874: 200-261.
    [7]
    LORD RAYLEIGH F R S. XII. On the manufacture and theory of diffraction-gratings[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1874, 47(310):81-93. doi: 10.1080/14786447408640996
    [8]
    LI L, GUO W, YAN Y ZH, et al.. Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy[J]. Light:Science & Applications, 2013, 2(9):e104. http://cn.bing.com/academic/profile?id=da2755c7a3a9ac952a47ba2b689ccf87&encoded=0&v=paper_preview&mkt=zh-cn
    [9]
    XU J Q, TEHRANI K F, KNER P. Multicolor 3D super-resolution imaging by quantum dot stochastic optical reconstruction microscopy[J]. ACS Nano, 2015, 9(3):2917-2925. doi: 10.1021/nn506952g
    [10]
    YUE F Y, ZHANG CH M, ZANG X F, et al.. High-resolution grayscale image hidden in a laser beam[J]. Light:Science & Applications, 2018, 7:17129. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gkxyyy-e201801009
    [11]
    ZHU X L, YAN W, LEVY U, et al.. Resonant laser printing of structural colors on high-index dielectric metasurfaces[J]. Science Advances, 2017, 3(5):e1602487. doi: 10.1126/sciadv.1602487
    [12]
    NOBUKAWA T, NOMURA T. Multilayer recording holographic data storage using a varifocal lens generated with a kinoform[J]. Optics Letters, 2015, 40(23):5419-5422. doi: 10.1364/OL.40.005419
    [13]
    RAOUX S, WEłNIC W, IELMINI D. Phase change materials and their application to nonvolatile memories[J]. Chemical Reviews, 2010, 110(1):240-267. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9cfdec7b60ec1ecc289ccb63ec9ec4cd
    [14]
    SUN J B, LITCHINITSER N M. Toward practical, subwavelength, visible-light photolithography with hyperlens[J]. ACS Nano, 2018, 12(1):542-548. doi: 10.1021/acsnano.7b07185
    [15]
    WANG R, WEI J S, FAN Y T. Chalcogenide phase-change thin films used as grayscale photolithography materials[J]. Optics Express, 2014, 22(5):4973-4984. doi: 10.1364/OE.22.004973
    [16]
    LUBECK E, CAI L. Single-cell systems biology by super-resolution imaging and combinatorial labeling[J]. Nature Methods, 2012, 9(7):743-748. doi: 10.1038/nmeth.2069
    [17]
    NÄGERL U V, SIBARITA J B. Special section guest editorial:super-resolution microscopy of neural structure and function[J]. Neurophotonics, 2016, 3(4):041801. doi: 10.1117/1.NPh.3.4.041801
    [18]
    KHORASANINEJAD M, CHEN W T, ZHU A Y, et al.. Multispectral chiral imaging with a metalens[J]. Nano Letters, 2016, 16(7):4595-4600. doi: 10.1021/acs.nanolett.6b01897
    [19]
    ZHANG X T, YAN L SH, GUO Y H, et al.. Enhanced far-field focusing by plasmonic lens under radially polarized beam illumination[J]. Plasmonics, 2016, 11(1):109-115. doi: 10.1007/s11468-015-0029-9
    [20]
    SPEKTOR G, DAVID A, GJONAJ B, et al.. Metafocusing by a metaspiral plasmonic lens[J]. Nano Letters, 2015, 15(9):5739-5743. doi: 10.1021/acs.nanolett.5b01571
    [21]
    SHALAEV V M. Optical negative-index metamaterials[J]. Nature Photonics, 2007, 1(1):41-48. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0221150596/
    [22]
    PENDRY J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 2000, 85(18):3966-3969. doi: 10.1103/PhysRevLett.85.3966
    [23]
    LIU ZH W, LEE H, XIONG Y, et al.. Far-field optical hyperlens magnifying sub-diffraction-limited objects[J]. Science, 2007, 315(5819):1686. doi: 10.1126/science.1137368
    [24]
    LIU ZH W, STEELE J M, SRITURAVANICH W, et al.. Focusing surface plasmons with a plasmonic lens[J]. Nano Letters, 2005, 5(9):1726-1729. doi: 10.1021/nl051013j
    [25]
    KHORASANINEJAD M, CHEN W T, DEVLIN R C, et al.. Metalenses at visible wavelengths:Diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 2016, 352(6290):1190-1194. doi: 10.1126/science.aaf6644
    [26]
    ARBABI E, ARBABI A, KAMALI S M, et al.. MEMS-tunable dielectric metasurface lens[J]. Nature Communications, 2018, 9(1):812. doi: 10.1038/s41467-018-03155-6
    [27]
    ARBABI A, HORIE Y, BAGHERI M, et al.. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nature Nanotechnology, 2015, 10(11):937-943. doi: 10.1038/nnano.2015.186
    [28]
    SUN H, ZHU Y CH, GAO B, et al.. Polarization-dependent quasi-far-field superfocusing strategy of nanoring-based plasmonic lenses[J]. Nanoscale Research Letters, 2017, 12(1):386. doi: 10.1186/s11671-017-2154-1
    [29]
    FERNANDEZ-DOMINGUEZ A I, LIU ZH W, PENDRY J B. Coherent four-fold super-resolution imaging with composite photonic plasmonic structured illumination[J]. ACS Photonics, 2015, 2(3):341-348. doi: 10.1021/ph500342g
    [30]
    ELEFTHERIADES G V, MARKLEY L, WONG A M H. Sub-wavelength focusing and imaging using shifted-beam and super-oscillation antenna arrays[C]. Proceedings of 201215th International Symposium on Antenna Technology and Applied Electromagnetics, IEEE, 2012.
    [31]
    WEN ZH Q, HE Y H, LI Y Y, et al.. Super-oscillation focusing lens based on continuous amplitude and binary phase modulation[J]. Optics Express, 2014, 22(18):22163-22171. doi: 10.1364/OE.22.022163
    [32]
    ROGERS E T F, SAVO S, LINDBERG J, et al.. Super-oscillatory optical needle[J]. Applied Physics Letters, 2013, 102(3):031108. doi: 10.1063/1.4774385
    [33]
    LIU T, TAN J B, LIU J, et al.. Vectorial design of super-oscillatory lens[J]. Optics Express, 2013, 21(13):15090-15101. doi: 10.1364/OE.21.015090
    [34]
    YUAN G H, ROGERS E T F, ZHELUDEV N I. Tailoring optical super-oscillations with metasurfaces[C]. Proceedings of 2016 Conference on Lasers and Electro-Optics, IEEE, 2016.
    [35]
    BERRY M V, POPESCU S. Evolution of quantum superoscillations and optical superresolution without evanescent waves[J]. Journal of Physics A:Mathematical and General, 2006, 39(22):6965-6977. doi: 10.1088/0305-4470/39/22/011
    [36]
    HUANG F M, CHEN Y F, DE ABAJO F J G, et al.. Optical super-resolution through super-oscillations[J]. Journal of Optics A:Pure and Applied Optics, 2007, 9(9):S285-S288. doi: 10.1088/1464-4258/9/9/S01
    [37]
    HUANG F M, ZHELUDEV N I. Super-resolution without evanescent waves[J]. Nano Letters, 2009, 9(3):1249-1254. doi: 10.1021/nl9002014
    [38]
    ROGERS E T F, LINDBERG J, ROY T, et al.. A super-oscillatory lens optical microscope for subwavelength imaging[J]. Nature Materials, 2012, 11(5):432-435. doi: 10.1038/nmat3280
    [39]
    HUANG K, YE H P, TENG J H, et al.. Optimization-free superoscillatory lens using phase and amplitude masks[J]. Laser & Photonics Reviews, 2014, 8(1):152-157.
    [40]
    QIN F, HUANG K, WU J F, et al.. A supercritical lens optical label-free microscopy:sub-diffraction resolution and ultra-long working distance[J]. Advanced Materials, 2017, 29(8):1602721. doi: 10.1002/adma.201602721
    [41]
    POON T C. Digital Holography and Three-dimensional Display:Principles and Applications[M]. Boston:Springer, 2006.
    [42]
    POON T C, MOTAMEDI M. Optical/digital incoherent image processing for extended depth of field[J]. Applied Optics, 1987, 26(21):4612-4615. doi: 10.1364/AO.26.004612
    [43]
    YUAN G H, ROGERS E T F, ROY T, et al.. Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths[J]. Scientific Reports, 2014, 4:6333.
    [44]
    QIN F, HUANG K, WU J F, et al.. Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light[J]. Scientific Reports, 2015, 5:9977. doi: 10.1038/srep09977
    [45]
    LIU T, WANG T, YANG SH M, et al.. Focusing far-field nanoscale optical needles by planar nanostructured metasurfaces[J]. Optics Communications, 2016, 372:118-122. doi: 10.1016/j.optcom.2016.04.022
    [46]
    CHEN G, WU ZH X, YU A P, et al.. Planar binary-phase lens for super-oscillatory optical hollow needles[J]. Scientific Reports, 2017, 7(1):4697. doi: 10.1038/s41598-017-05060-2
    [47]
    ZHANG Y H, ZHONG W H, LIU D M, et al.. Creation of sub-diffraction optical needle by nonlinear super-oscillatory lens[C]. Proceedings of 2016 Conference on Lasers and Electro-optics, IEEE, 2016.
    [48]
    ROY T, ROGERS E T F, YUAN G H, et al.. Point spread function of the optical needle super-oscillatory lens[J]. Applied Physics Letters, 2014, 104(23):231109. doi: 10.1063/1.4882246
    [49]
    DIAO J SH, YUAN W ZH, YU Y T, et al.. Controllable design of super-oscillatory planar lenses for sub-diffraction-limit optical needles[J]. Optics Express, 2016, 24(3):1924-1933. doi: 10.1364/OE.24.001924
    [50]
    BERRY M V. A note on superoscillations associated with Bessel beams[J]. Journal of Optics, 2013, 15(4):044006. doi: 10.1088/2040-8978/15/4/044006
    [51]
    CHEN W T, HORASANINEJAD M, ZHU A Y, et al.. Generation of wavelength-independent subwavelength Bessel beams using metasurfaces[J]. Light:Science & Applications, 2017, 6(5):e16259. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gkxyyy-e201702023
    [52]
    YU W T, JI Z H, DONG D SH, et al.. Super-resolution deep imaging with hollow Bessel beam STED microscopy[J]. Laser & Photonics Reviews, 2016, 10(1):147-152. http://cn.bing.com/academic/profile?id=bb1beab0c08b7de5e07a0e9ef8b9d4f0&encoded=0&v=paper_preview&mkt=zh-cn
    [53]
    BERTHELOT J, AĆIMOVIĆ S S, JUAN M L, et al.. Three-dimensional manipulation with scanning near-field optical nanotweezers[J]. Nature Nanotechnology, 2014, 9(4):295-299. doi: 10.1038/nnano.2014.24
    [54]
    GAO L, SHAO L, CHEN B CH, et al.. 3D live fluorescence imaging of cellular dynamics using Bessel beam plane illumination microscopy[J]. Nature Protocols, 2014, 9(5):1083-1101. doi: 10.1038/nprot.2014.087
    [55]
    LI M Y, LI W L, LI H Y, et al.. Controllable design of super-oscillatory lenses with multiple sub-diffraction-limit foci[J]. Scientific Reports, 2017, 7:1335. doi: 10.1038/s41598-017-01492-y
    [56]
    DE GRACIA P, DORRONSORO C, MARCOS S. Multiple zone multifocal phase designs[J]. Optics Letters, 2013, 38(18):3526-3529. doi: 10.1364/OL.38.003526
    [57]
    LALITHAMBIGAI K, ANBARASAN P M, RAJESH K B. Formation of multiple focal spots using a high NA lens with a complex spiral phase mask[J]. Physica Scripta, 2014, 89(7):075501. doi: 10.1088/0031-8949/89/7/075501
    [58]
    VALLEY P, MATHINE D L, DODGE M R, et al.. Tunable-focus flat liquid-crystal diffractive lens[J]. Optics Letters, 2010, 35(3):336-338. doi: 10.1364/OL.35.000336
    [59]
    CHOE Y, KIM J W, SHUNG K K, et al.. Ultrasonic microparticle trapping by multi-foci Fresnel lens[C]. Proceedings of 2011 Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum, IEEE, 2011.
    [60]
    LI W L, YU Y T, YUAN W ZH. Flexible focusing pattern realization of centimeter-scale planar super-oscillatory lenses in parallel fabrication[J]. Nanoscale, 2019, 11(1):311-320. doi: 10.1039/C8NR07985D
    [61]
    ZHOU Y, CHEN R, MA Y G. Design of optical wavelength demultiplexer based on off-axis meta-lens[J]. Optics Letters, 2017, 42(22):4716-4719. doi: 10.1364/OL.42.004716
    [62]
    NI X J, KILDISHEV A V, SHALAEV V M. Metasurface holograms for visible light[J]. Nature Communications, 2013, 4:2807. doi: 10.1038/ncomms3807
    [63]
    CU-NGUYEN P H, GREWE A, FEBER P, et al.. An imaging spectrometer employing tunable hyperchromatic microlenses[J]. Light:Science & Applications, 2015, 5(4):e16058. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gkxyyy-e201602010
    [64]
    ROGERS K S, BOURDAKOS K N, YUAN G H, et al.. Optimising superoscillatory spots for far-field super-resolution imaging[J]. Optics Express, 2018, 26(7):8095-8112. doi: 10.1364/OE.26.008095
    [65]
    WANG CH T, TANG D L, WANG Y Q, et al.. Super-resolution optical telescopes with local light diffraction shrinkage[J]. Scientific Reports, 2015, 5:18485. doi: 10.1038/srep18485
    [66]
    HAO X, KUANG C F, WANG T T, et al.. Effects of polarization on the de-excitation dark focal spot in STED microscopy[J]. Journal of Optics, 2010, 12(11):115707. doi: 10.1088/2040-8978/12/11/115707
    [67]
    XUE Y, KUANG C F, LI SH, et al.. Sharper fluorescent super-resolution spot generated by azimuthally polarized beam in STED microscopy[J]. Optics Express, 2012, 20(16):17653-17666. doi: 10.1364/OE.20.017653
    [68]
    SINGH B K, NAGAR H, ROICHMAN Y, et al.. Particle manipulation beyond the diffraction limit using structured super-oscillating light beams[J]. Light:Science & Applications, 2017, 6(9):e17050. http://cn.bing.com/academic/profile?id=4286a3dc25b0a109451724114634f366&encoded=0&v=paper_preview&mkt=zh-cn
    [69]
    YE H P, WAN CH, HUANG K, et al.. Creation of vectorial bottle-hollow beam using radially or azimuthally polarized light[J]. Optics Letters, 2014, 39(3):630-633. doi: 10.1364/OL.39.000630
    [70]
    YU A P, CHEN G, ZHANG ZH H, et al.. Creation of sub-diffraction longitudinally polarized spot by focusing radially polarized light with binary phase lens[J]. Scientific Reports, 2016, 6:38859. doi: 10.1038/srep38859
    [71]
    YUAN G H, VEZZOLI S, ALTUZARRA C, et al.. Quantum super-oscillation of a single photon[J]. Light:Science & Applications, 2016, 5(8):e16127. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gkxyyy-e201603016
    [72]
    LIU T, SHEN T, YANG SH M, et al.. Subwavelength focusing by binary multi-annular plates:design theory and experiment[J]. Journal of Optics, 2015, 17(3):035610. doi: 10.1088/2040-8978/17/3/035610
    [73]
    CHEN G, WU ZH X, YU A P, et al.. Generation of a sub-diffraction hollow ring by shaping an azimuthally polarized wave[J]. Scientific Reports, 2016, 6:37776. doi: 10.1038/srep37776
    [74]
    CHEN G, LI Y Y, YU A P, et al.. Super-oscillatory focusing of circularly polarized light by ultra-long focal length planar lens based on binary amplitude-phase modulation[J]. Scientific Reports, 2016, 6:29068. doi: 10.1038/srep29068
    [75]
    HUANG K, QIN F, LIU H, et al.. Planar diffractive lenses:fundamentals, functionalities, and applications[J]. Advanced Materials, 2018, 30(26):1704556. doi: 10.1002/adma.201704556
    [76]
    BERESNA M, GECEVIČIUS M, KAZANSKY P G. Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass[J]. Optical Materials Express, 2011, 1(4):783-795. doi: 10.1364/OME.1.000783
    [77]
    YANG J, WANG ZH, WANG F, et al.. Atomically thin optical lenses and gratings[J]. Light:Science & Applications, 2016, 5(3):e16046. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gkxyyy-e201602004
    [78]
    LIN H, XU Z Q, QIU CH W, et al.. Atomically thin optical lenses and gratings[J]. Light:Science & Applications, 2016, 5(3):e16046. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gkxyyy-e201602004
    [79]
    LIU CH H, ZHENG J J, COLBURN S, et al.. Ultrathin van der Waals metalenses[J]. Nano Letters, 2018, 18(11):6961-6966. doi: 10.1021/acs.nanolett.8b02875
    [80]
    HYUN J, KIM Y T, DOH I, et al.. Realization of an ultrathin acoustic lens for subwavelength focusing in the megasonic range[J]. Scientific Reports, 2018, 8(1):9131. doi: 10.1038/s41598-018-27312-5
    [81]
    LEGARIA S, PACHECO-PE A V, BERUETE M. Super-oscillatory metalens at terahertz for enhanced focusing with reduced side lobes[J]. Photonics, 2018, 5(4):56. doi: 10.3390/photonics5040056
    [82]
    YUAN G H, ROGERS E T F, ZHELUDEV N I. Achromatic super-oscillatory lenses with sub-wavelength focusing[J]. Light:Science & Applications, 2017, 6(9):e17036. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gkxyyy-e201703024
    [83]
    LI ZH, ZHANG T, WANG Y Q, et al.. Achromatic broadband super-resolution imaging by super-oscillatory metasurface[J]. Laser & Photonics Reviews, 2018, 12(10):1800064. http://cn.bing.com/academic/profile?id=d07e5aa2f00ed7da4a6c6de470e0a382&encoded=0&v=paper_preview&mkt=zh-cn
    [84]
    AVAYU O, ALMEIDA E, PRIOR Y, et al.. Composite functional metasurfaces for multispectral achromatic optics[J]. Nature Communications, 2017, 8:14992. doi: 10.1038/ncomms14992
    [85]
    ZHOU Y, KRAVCHENKO I I, WANG H, et al.. Multilayer noninteracting dielectric metasurfaces for multiwavelength metaoptics[J]. Nano Letters, 2018, 18(12):7529-7537. doi: 10.1021/acs.nanolett.8b03017
    [86]
    ZHAO W Q, QIU L R, FENG ZH D. Effect of fabrication errors on superresolution property of a pupil filter[J]. Optics Express, 2006, 14(16):7024-7036. doi: 10.1364/OE.14.007024
    [87]
    KOSMEIER S, MAZILU M, BAUMGARTL J, et al.. Enhanced two-point resolution using optical eigenmode optimized pupil functions[J]. Journal of Optics, 2011, 13(10):105707. doi: 10.1088/2040-8978/13/10/105707
    [88]
    LERMAN G M, YANAI A, LEVY U. Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light[J]. Nano Letters, 2009, 9(5):2139-2143. doi: 10.1021/nl900694r
    [89]
    HUANG K, SHI P, CAO G W, et al.. Vector-vortex Bessel-Gauss beams and their tightly focusing properties[J]. Optics Letters, 2011, 36(6):888-890. doi: 10.1364/OL.36.000888
    [90]
    LI X P, CAO Y Y, GU M. Superresolution-focal-volume induced 3.0 Tbytes/disk capacity by focusing a radially polarized beam[J]. Optics Letters, 2011, 36(13):2510-2512. doi: 10.1364/OL.36.002510
    [91]
    YUAN G H, ROGERS E T F, ROY T, et al.. Flat super-oscillatory lens for heat-assisted magnetic recording with sub-50nm resolution[J]. Optics Express, 2014, 22(6):6428-6437. doi: 10.1364/OE.22.006428
    [92]
    ROY T, ROGERS E T F, ZHELUDEV N I. Sub-wavelength focusing meta-lens[J]. Optics Express, 2013, 21(6):7577-7582. doi: 10.1364/OE.21.007577
    [93]
    YUAN G H, ROGERS E T F, ROY T, et al.. Plasmonic super-oscillations and sub-diffraction focusing[C]. Proceedings of 2014 CLEO, Optical Society of America, 2014: FTu2K.5.
    [94]
    HUANG K, LIU H, GARCIA-VIDAL F J, et al.. Ultrahigh-capacity non-periodic photon sieves operating in visible light[J]. Nature Communications, 2015, 6:7059. doi: 10.1038/ncomms8059
    [95]
    TANG D L, WANG CH T, ZHAO Z Y, et al.. Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing[J]. Laser & Photonics Reviews, 2015, 9(6):713-719. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/lpor.201500182
    [96]
    NI H B, YUAN G H, SUN L D, et al.. Large-scale high-numerical-aperture super-oscillatory lens fabricated by direct laser writing lithography[J]. RSC Advances, 2018, 8(36):20117-20123. doi: 10.1039/C8RA02644K
    [97]
    HAO CH L, NIE ZH Q, YE H P, et al.. Three-dimensional supercritical resolved light-induced magnetic holography[J]. Science Advances, 2017, 3(10):e1701398. doi: 10.1126/sciadv.1701398
    [98]
    GONG L, LIN J, HAO CH L, et al.. Supercritical focusing coherent anti-Stokes Raman scattering microscopy for high-resolution vibrational imaging[J]. Optics Letters, 2018, 43(22):5615-5618. doi: 10.1364/OL.43.005615
    [99]
    KHORASANINEJAD M, AIETA F, KANHAIYA P, et al.. Achromatic metasurface lens at telecommunication wavelengths[J]. Nano Letters, 2015, 15(8):5358-5362. doi: 10.1021/acs.nanolett.5b01727
    [100]
    ARBABI E, ARBABI A, KAMALI S M, et al.. MEMS-tunable dielectric metasurface lens[J]. Nature Communications, 2018, 9(1):812. doi: 10.1038/s41467-018-03155-6
    [101]
    WANG SH M, WU P C, SU V C, et al.. A broadband achromatic metalens in the visible[J]. Nature Nanotechnology, 2018, 13(3):227-232. doi: 10.1038/s41565-017-0052-4
    [102]
    PANIAGUA-DOMINGUEZ R, YU Y F, KHAIDAROV E, et al.. A metalens with a near-unity numerical aperture[J]. Nano Letters, 2018, 8(3):2124-2132. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c023e7de5ca32aaa7a07e33269383f59
    [103]
    CHEN W T, HU A Y, SANJEEV V, et al.. A broadband achromatic metalens for focusing and imaging in the visible[J]. Nature Nanotechnology, 2018, 13(3):220-226. doi: 10.1038/s41565-017-0034-6
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(23)

    Article views(2241) PDF downloads(241) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return