Volume 12 Issue 5
Oct.  2019
Turn off MathJax
Article Contents
WANG Lan, DONG Yuan, GAO Song, CHEN Kui-yi, FANG Fa-cheng, JIN Guang-yong. Research progress of perovskite materials in the field of lasers[J]. Chinese Optics, 2019, 12(5): 993-1014. doi: 10.3788/CO.20191205.0993
Citation: WANG Lan, DONG Yuan, GAO Song, CHEN Kui-yi, FANG Fa-cheng, JIN Guang-yong. Research progress of perovskite materials in the field of lasers[J]. Chinese Optics, 2019, 12(5): 993-1014. doi: 10.3788/CO.20191205.0993

Research progress of perovskite materials in the field of lasers

doi: 10.3788/CO.20191205.0993
More Information
  • Corresponding author: JIN Guang-yong, E-mail: jgycust@163.com
  • Received Date: 07 Jan 2019
  • Rev Recd Date: 01 Mar 2019
  • Publish Date: 01 Oct 2019
  • Perovskite has the advantages of high luminescence quantum yield and having a free carrier and a perfect crystal structure. It was first proposed for applications in the field of solar cells and has been rapidly developing in recent years. The direction of its research has gradually expanded to electroluminescence and lasers. In this paper, the research progress of perovskite materials in the laser field is introduced, which is mainly described from four perspectives:perovskite lasers with an adjustable wide wavelength range, perovskite lasers with high stability, perovskite lasers with ultraviolet light and new wavelength laser output potential, and perovskite lasers with nonlinear optical characteristics. Various preparation methods and optical properties of perovskite materials are listed. The structure characteristics and output mode of existing perovskite lasers are summarized and the existing barriers to the widespread application of perovskite materials in lasers are analyzed. This paper provides reference for further research on perovskite materials in the field of lasers.

     

  • loading
  • [1]
    王圣之.有机-无机杂化钙钛矿的合成与光学性能研究[D].南京: 东南大学, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10286-1016246732.htm

    WANG SH ZH. Synthesis and optical properties of organic-inorganic hybrid perovskite[D]. Nanjing: Southeast University, 2016.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10286-1016246732.htm
    [2]
    陈聪.钙钛矿氧化物薄膜的电学及光学非线性特性研究[D].合肥: 中国科学技术大学, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10358-1011124938.htm

    CHEN C. Nonlinear electrical and optical properties of perovskite oxide films[D]. Hefei: University of Science and Technology of China, 2011.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10358-1011124938.htm
    [3]
    张冰.有机卤化物CH3NH3PbX3材料光学性能研究[D].北京: 北京交通大学, 2017. http://xuewen.cnki.net/CMFD-1017086533.nh.html

    ZHANG B. Study on the optical properties of organic halide CH3NH3PbX3materials[D]. Beijing: Beijing Jiaotong University, 2017.(in Chinese) http://xuewen.cnki.net/CMFD-1017086533.nh.html
    [4]
    XING G CH, MATHEWS N, LIM S S, et al.. Low-temperature solution-processed wavelength-tunable perovskites for lasing[J]. Nature Materials, 2014, 13(5):476-480. doi: 10.1038/nmat3911
    [5]
    SUTHERLAND B R, HOOGLAND S, ADACHI M M, et al.. Conformal organohalide perovskites enable lasing on spherical resonators[J]. ACS Nano, 2014, 8(10):10947-10952. doi: 10.1021/nn504856g
    [6]
    邬承就, 王强民, 赵梅荣, 等.694 nm激光泵浦的Tm:YAG可调谐激光器[J].量子电子学报, 1998, 15(1):60-65. http://d.old.wanfangdata.com.cn/Periodical/zhyygrxzz200208010

    WU CH J, WANG Q M, ZHAO M R, et al.. Tm:YAG tunable lasers pumped by a 694 nm laser[J]. Chinese Journal of Quantum Electronics, 1998, 15(1):60-65.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/zhyygrxzz200208010
    [7]
    张瑞君.波长可调谐激光器开发现状及应用市场前景[J].中国电子商情:基础电子, 2008(7):52-55. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200802254561

    ZHANG R J. Development status and application market prospects of wavelength tunable lasers[J]. China Electronic Market, 2008(7):52-55.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200802254561
    [8]
    CHENG Z Y, LIN J. Layered organic-inorganic hybrid perovskites:structure, optical properties, film preparation, patterning and templating engineering[J]. CrystEngComm, 2010, 12(10):2646-2662. doi: 10.1039/c001929a
    [9]
    ZHU H M, FU Y P, MENG F, et al.. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors[J]. Nature Materials, 2015, 14(6):636-642. doi: 10.1038/nmat4271
    [10]
    FU Y P, ZHU H M, SCHRADER A W, et al.. Nanowire lasers of formamidinium lead halide perovskites and their stabilized alloys with improved stability[J]. Nano Letters, 2016, 16(2):1000-1008. doi: 10.1021/acs.nanolett.5b04053
    [11]
    SALIBA M, WOOD S M, PATEL J B, et al.. Structured organic-inorganic perovskite toward a distributed feedback laser[J]. Advanced Materials, 2016, 28(5):923-929. doi: 10.1002/adma.201502608
    [12]
    XING G CH, KUMAR M H, CHONG W K, et al.. Solution-processed tin-based perovskite for near-infrared lasing[J]. Advanced Materials, 2016, 28(37):8191-8196. doi: 10.1002/adma.201601418
    [13]
    HE X X, LIU P, ZHANG H H, et al.. Patterning multicolored microdisk laser arrays of cesium lead halide perovskite[J]. Advanced Materials, 2017, 29(12):1604510. doi: 10.1002/adma.201604510
    [14]
    EATON S W, LAI M L, GIBSON N A, et al.. Lasing in robust cesium lead halide perovskite nanowires[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(8):1993-1998. doi: 10.1073/pnas.1600789113
    [15]
    YAKUNIN S, PROTESESCU L, KRIEG F, et al.. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites[J]. Nature Communications, 2015, 6:8056. doi: 10.1038/ncomms9056
    [16]
    ZHANG Q, SU R, LIU X F, et al.. High-quality whispering-gallery-mode lasing from cesium lead halide perovskite nanoplatelets[J]. Advanced Functional Materials, 2016, 26(34):6238-6245. doi: 10.1002/adfm.201601690
    [17]
    HUANG CH Y, ZOU CH, MAO CH Y, et al.. CsPbBr3 perovskite quantum dot vertical cavity lasers with low threshold and high stability[J]. ACS Photonics, 2017, 4(9):2281-2289. doi: 10.1021/acsphotonics.7b00520
    [18]
    HARWELL J R, WHITWORTH G L, TURNBULL G A, et al.. Green perovskite distributed feedback lasers[J]. Scientific Reports, 2017, 7(1):11727. doi: 10.1038/s41598-017-11569-3
    [19]
    TANG B, DONG H X, SUN L X, et al.. Single-mode lasers based on cesium lead halide perovskite submicron spheres[J]. ACS Nano, 2017, 11(11):10681-10688. doi: 10.1021/acsnano.7b04496
    [20]
    JIANG L, LIU R M, SU R L, et al.. Continuous wave pumped single-mode nanolasers in inorganic perovskites with robust stability and high quantum yield[J]. Nanoscale, 2018, 10(28):13565-13571. doi: 10.1039/C8NR03830A
    [21]
    ZHANG Q, HA S T, LIU X F, et al.. Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers[J]. Nano Letters, 2014, 14(10):5995-6001. doi: 10.1021/nl503057g
    [22]
    LIAO Q, HU K, ZHANG H H, et al.. Perovskite microdisk microlasers self-assembled from solution[J]. Advanced Materials, 2015, 27(22):3405-3410. doi: 10.1002/adma.201500449
    [23]
    SCHMIDT L C, PERTEG S A, GONZ LEZ-CARRERO S, et al.. Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles[J]. Journal of the American Chemical Society, 2014, 136(3):850-853. doi: 10.1021/ja4109209
    [24]
    LIU X F, NIU L, WU CH Y, et al.. Periodic Organic-inorganic halide perovskite microplatelet arrays on silicon substrates for room-temperature lasing[J]. Advanced Science, 2016, 3(11):1600137. doi: 10.1002/advs.201600137
    [25]
    WANG Y, LI X M, NALLA V, et al.. Solution-processed low threshold vertical cavity surface emitting lasers from all-inorganic perovskite nanocrystals[J]. Advanced Functional Materials, 2017, 27(13):1605088. doi: 10.1002/adfm.201605088
    [26]
    ZHAO J Y, YAN Y L, WEI C, et al.. Switchable single-mode perovskite microlasers modulated by responsive organic microdisks[J]. Nano Letters, 2018, 18(2):1241-1245. doi: 10.1021/acs.nanolett.7b04834
    [27]
    LI G H, CHE T, JI X D, et al.. Record-low-threshold lasers based on atomically smooth triangular nanoplatelet perovskite[J]. Advanced Functional Materials, 2019, 29(2):1805553. doi: 10.1002/adfm.201805553
    [28]
    WANG X X, CHEN H ZH, ZHOU H, et al.. Room-temperature high-performance CsPbBr3 perovskite tetrahedral microlasers[J]. Nanoscale, 2019, 11(5):2393-2400. doi: 10.1039/C8NR09856E
    [29]
    YU Y, CHEE Y C, PENG XY, et al.. High power 355 nm diode-pumped solid-state laser[J]. Proceedings of SPIE, 2015, 9524:95241A.
    [30]
    AUBERT N, GEORGES T, CHAUZAT C, et al.. Low-cost 7 mW CW 355-nm diode-pumped intracavity frequency-tripled microchip laser[J]. Proceedings of SPIE, 2006, 6100:610008. doi: 10.1117/12.644165
    [31]
    LIU Q, YAN X P, GONG M L, et al.. High-power 266 nm ultraviolet generation in yttrium aluminum borate[J]. Optics Letters, 2011, 36(14):2653-2655. doi: 10.1364/OL.36.002653
    [32]
    NIKITIN D G, BYALKOVSKIY O A, VERSHININ O I, et al.. Sum frequency generation of UV laser radiation at 266 nm in LBO crystal[C]. Proceedings of 2014 International Conference Laser Optics, IEEE, 2014.
    [33]
    YAN CH, WANG Y Y, XU D G, et al.. High-power high-efficiency picosecond 355nm ultraviolet laser based on La2CaB10O19 crystal[J]. Proceedings of SPIE, 2014, 9266:92661G. doi: 10.1117/12.2074323
    [34]
    PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al.. Nanocrystals of cesium lead halide perovskites(CsPbX3, X=Cl, Br, and I):novel optoelectronic materials showing bright emission with wide color gamut[J]. Nano Letters, 2015, 15(6):3692-3696. doi: 10.1021/nl5048779
    [35]
    杨志胜, 柯蔚芳, 王艳香, 等.杂化钙钛矿(HOC2H4NH3)2CuCl4的制备与表征[J].无机材料学报, 2017, 32(10):1063-1067. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wjclxb201710009

    YANG ZH SH, KE W F, WANG Y X, et al.. Preparation and characterization of a novel hybrid Perovskite (HOC2H4NH3)2CuCl4[J]. Journal of Inorganic Materials, 2017, 32(10):1063-1067.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wjclxb201710009
    [36]
    高允贵.用于深紫外光源的非线性光学材料[J].光电子技术与信息, 1999, 12(1):23-26. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdzjsyxx199901004

    GAO Y G. Nonlinear optical materials for deep ultraviolet light sources[J]. Optoelectronic Technology & Information, 1999, 12(1):23-26.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdzjsyxx199901004
    [37]
    XING J, LIU X F, ZHANG Q, et al.. Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers[J]. Nano Letters, 2015, 15(7):4571-4577. doi: 10.1021/acs.nanolett.5b01166
    [38]
    KAO T S, HONG K B, CHOU Y H, et al.. Localized surface plasmon for enhanced lasing performance in solution-processed perovskites[J]. Optics Express, 2016, 24(18):20696-20702. doi: 10.1364/OE.24.020696
    [39]
    GU ZH Y, WANG K Y, SUN W ZH, et al.. Two-photon pumped CH3NH3PbBr3 perovskite microwire lasers[J]. Advanced Optical Materials, 2016, 4(3):472-479. doi: 10.1002/adom.201500597
    [40]
    ZHANG W, PENG L, LIU J, et al.. Controlling the cavity structures of two-photon-pumped perovskite microlasers[J]. Advanced Materials, 2016, 28(21):4040-4046. doi: 10.1002/adma.201505927
    [41]
    YANG B, MAO X, YANG S Q, et al.. Low Threshold two-photon-pumped amplified spontaneous emission in CH3NH3PbBr3 microdisks[J]. ACS Applied Materials & Interfaces, 2016, 8(30):19587-19592. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7cd83c2bcced647a3343b959b88d4c90
    [42]
    GAO Y SH, WANG SH, HUANG C, et al.. Room temperature three-photon pumped CH3NH3PbBr3 perovskite microlasers[J]. Scientific Reports, 2017, 7:45391. doi: 10.1038/srep45391
    [43]
    KUMAR M H, DHARANI S, LEONG W L, et al.. Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation[J]. Advanced Materials, 2014, 26(41):7122-7127. doi: 10.1002/adma.201401991
    [44]
    DANG Y Y, ZHOU Y A, LIU X L, et al.. Formation of hybrid perovskite tin iodide single crystals by top-seeded solution growth[J]. Angewandte Chemie International Edition, 2016, 55(10):3447-3450. doi: 10.1002/anie.201511792
    [45]
    PARK B W, PHILIPPE B, ZHANG X L, et al.. Bismuth based hybrid perovskites A3Bi2I9(A:Methylammonium or cesium) for solar cell application[J]. Advanced Materials, 2015, 27(43):6806-6813. doi: 10.1002/adma.201501978
    [46]
    FU Y P, ZHU H M, STOUMPOS C C, et al.. Broad wavelength tunable robust lasing from single-crystal nanowires of cesium lead halide perovskites(CsPbX3, X=Cl, Br, I)[J]. ACS Nano, 2016, 10(8):7963-7972. doi: 10.1021/acsnano.6b03916
    [47]
    JEON T, KIM S J, YOON J, et al.. Hybrid perovskites:effective crystal growth for optoelectronic applications[J]. Advanced Energy Materials, 2017, 7(19):1602596. doi: 10.1002/aenm.201602596
    [48]
    VELDHUIS S A, BOIX P P, YANTARA N, et al.. Perovskite materials for light-emitting diodes and lasers[J]. Advanced Materials, 2016, 28(32):6804-6834. doi: 10.1002/adma.201600669
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(24)  / Tables(1)

    Article views(3337) PDF downloads(329) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return