Volume 12 Issue 3
Jun.  2019
Turn off MathJax
Article Contents
MA Guang-hui, ZHANG Jia-bin, ZHANG He, JIN Liang, WANG Guan-xin, XU Ying-tian. Resonant mode of Fabry-Perot microcavity regulated by metal surface plasmons[J]. Chinese Optics, 2019, 12(3): 649-662. doi: 10.3788/CO.20191203.0649
Citation: MA Guang-hui, ZHANG Jia-bin, ZHANG He, JIN Liang, WANG Guan-xin, XU Ying-tian. Resonant mode of Fabry-Perot microcavity regulated by metal surface plasmons[J]. Chinese Optics, 2019, 12(3): 649-662. doi: 10.3788/CO.20191203.0649

Resonant mode of Fabry-Perot microcavity regulated by metal surface plasmons

doi: 10.3788/CO.20191203.0649
Funds:

National Natural Foundation-Youth Foundation Project 21707010

the Excellent Youth Foundation of Jilin Province 20180520194JH

Changchun University of Science and Technology Innovation Foundation Project XJJLG-2016-07

More Information
  • Corresponding author: XU Ying-tian, E-mail:xyt@cust.edu.cn
  • Received Date: 11 May 2018
  • Rev Recd Date: 05 Jul 2018
  • Publish Date: 01 Jun 2019
  • At present, the use of zinc oxide(ZnO) micro-nanowire structures in ultraviolet laser devices with natural resonant cavities has attracted wide attention at home and abroad. Aiming at the problems of the luminescence and stability caused by ZnO intrinsic defects, research on the local field luminescence enhancement of plasmons is very important for the application of ZnO-based UV laser devices. In this paper, ZnO micro-wire structure model is constructed by theoretical simulation and the micro-cavity optical loss and Fabry-Perot(F-P) resonant cavity mode evolution are theoretically analyzed. The relationship between the diameter change of ZnO microcavity and the evolution of the F-P resonance mode, optical loss and light intensity distribution is obtained. On this basis, the six surfaces of ZnO microwires are modified by metal Ag nanoparticles. It is found that the resonance coupling effect of metal local surface plasmons significantly inhibited the loss of light around the microcavity and the local field enhancement is realized by the resonance coupling effect at the intersection of the metal and the microcavity. The simulation results show that after the surface of the microcavity is modified with Ag nanoparticles, the confinement ability of the optical field increased by 6.72%, while the secondary coupling occurs along the X axis between the metal particles, and the electric field intensity is enhanced by 2 times.

     

  • loading
  • [1]
    HUANG M H, MAO S, FEICK H, et al.. Room-temperature ultraviolet nanowire nanolasers[J]. Science, 2001, 292(5523):1897-1899. doi: 10.1126/science.1060367
    [2]
    申德振, 梅增霞, 梁会力, 等.氧化锌基材料、异质结构及光电器件[J].发光学报, 2014, 35(1):1-60. http://d.old.wanfangdata.com.cn/Periodical/fgxb201401001

    SHEN D ZH, MEI Z X, LIANG H L, et al.. ZnO-based matierial, heterojunction and photoelctronic device[J]. Chinese Journal of Luminescence, 2014, 35(1):1-60.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fgxb201401001
    [3]
    陈国炜, 朱荣.基于氧化锌纳米线的硅谐振式加速度计(英文)[J].光学 精密工程, 2009, 17(6):1279-1285. doi: 10.3321/j.issn:1004-924X.2009.06.014

    CHEN G W, ZHU R. Silicon micromachined resonant accelerometer based on ZnO nanowire[J]. Opt. Precision Eng., 2009, 17(6):1279-1285.(in Chinese) doi: 10.3321/j.issn:1004-924X.2009.06.014
    [4]
    VASILYEV N, NOVIKOV B V, AKOPYAN I K, et al.. ZnO-based random lasing on nanoparticles realized by laser induced breakdown[J]. Journal of Luminescence, 2017, 182:45-48. doi: 10.1016/j.jlumin.2016.10.012
    [5]
    RIGHINI G C, BERNESCHI S, COSCI A, et al.. Advanced Sensing by WGM Microresonators[C]. Proceedings of Optical Sensors 2017, Optical Society of America, 2017: SeM2E.5.
    [6]
    王马华, 朱光平, 朱汉清, 等.氧化锌纳米棒中自发辐射的回音壁模腔增强[J].中国激光, 2012, 39(7):154-159. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjg201207027

    WANG M H, ZHU G P, ZHU H Q, et al.. Enhancement for spontaneous emission from ZnO hexagonal microrods based on whispering gallery mode resonators[J]. Chinese Journal of Lasers, 2012, 39(7):154-159.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjg201207027
    [7]
    DONG H X, ZHOU B E, LI J ZH, et al.. Ultraviolet lasing behavior in ZnO optical microcavities[J]. Journal of Materiomics, 2017, 3(4):255-266. doi: 10.1016/j.jmat.2017.06.001
    [8]
    MAIER S A. Plasmonics:Fundamentals and Applications[M]. New York:Springer, 2007.
    [9]
    YAN R X, GARGAS D, YANG P D. Nanowire photonics[J]. Nature Photonics, 2009, 3(10):569-576. doi: 10.1038/nphoton.2009.184
    [10]
    WANG Y Y, QIN F F, LU J F, et al.. Plasmon enhancement for Vernier coupled single-mode lasing from ZnO/Pt hybrid microcavities[J]. Nano Research, 2017, 10(10):3447-3456. doi: 10.1007/s12274-017-1556-9
    [11]
    LONG H, GU J H, WANG H N, et al.. Numerical study of enhanced performance in ZnO-based ultraviolet light-emitting diodes with step graded-composition MgZnO multiple quantum barriers[J]. Superlattices & Microstructures, 2017, 190:821-828. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=45b2494a29659941c24f5c77437fadb3
    [12]
    CHEN T, XING G Z, ZHANG Z, et al.. Tailoring the photoluminescence of ZnO nanowires using Au nanoparticles[J]. Nanotechnology, 2008, 19(43):435711. doi: 10.1088/0957-4484/19/43/435711
    [13]
    CHENG P H, LI D SH, YUAN ZH ZH, et al.. Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film[J]. Applied Physics Letters, 2008, 92(4):041119. doi: 10.1063/1.2839404
    [14]
    于旭东, 雷雯, 刘畅.随机振动下光学谐振腔腔体形变及变动规律[J].光学 精密工程, 2017, 25(2):281-288. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201702001

    YU X D, LEI W, LIU CH. Deformation law of optical resonant cavity under random vibration environment[J]. Opt. Precision Eng., 2017, 25(2):281-288.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201702001
    [15]
    周炳琨, 高以智, 陈家骅, 等.激光原理[M].北京:国防工业出版社, 2004:20-76.

    ZHOU B K, GAO Y ZH, CHEN J H, et al.. Laser Principle[M]. Beijing:The National Defense Press, 2004:20-76.(in Chinese)
    [16]
    赫光生, 王润文, 王明常.激光物理学[M].上海:上海人民出版社, 1975:95-140.

    HAO G SH, WANG R W, WANG M CH. Laser Physics[M]. Shanghai:Shanghai People′s Press, 1975:95-140.(in Chinese)
    [17]
    邹英华, 孙碧亨.激光物理学[M].北京:北京大学出版社, 1991:68-75.

    ZHOU Y H, SUN B H. Laser Physics[M]. Beijing:Beijing University Press, 1991:68-75.(in Chinese)
    [18]
    任升, 刘丽炜, 李金华, 等.纳米尺度下的局域场增强研究进展[J].中国光学, 2018, 11(1):31-46. http://www.chineseoptics.net.cn/CN/abstract/abstract9558.shtml

    REN SH, LIU L W, LI J H, et al.. Advances in the local field enhancement at nanoscale[J]. Chinese Optics, 2018, 11(1):31-46.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9558.shtml
    [19]
    CAO R X, ZHANG X P, MIAO B F, et al.. From self-assembly to quantum guiding:a review of magnetic atomic structures on noble metal surfaces[J]. Chinese Physics B, 2014, 23(3):038102. doi: 10.1088/1674-1056/23/3/038102
    [20]
    王雪飞, 卢振武, 王泰升, 等.超表面上表面等离激元波的光栅衍射行为研究[J].中国光学, 2018, 11(1): 60-73. http://www.chineseoptics.net.cn/CN/abstract/abstract9534.shtml

    WANG X F, LU ZH W, WANG T SH, et al.. Grating diffractive behavior of surface plasmon wave on meta-surface[J]. Chinese Optics, 2018, 11(1):60-73.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9534.shtml
    [21]
    GARGAS D J, TOIMIL-MOLARES M E, YANG P D. Imaging single ZnO vertical nanowire laser cavities using UV-laser scanning confocal microscopy[J]. Journal of the American Chemical Society, 2009, 131(6):2125-2127. doi: 10.1021/ja8092339
    [22]
    KIM J, KIM S, BAHL G. Complete linear optical isolation at the microscale with ultralow loss[J]. Scientific Reports, 2017, 7:1647. doi: 10.1038/s41598-017-01494-w
    [23]
    WANG Y Y, XU C X, JIANG M M, et al.. Lasing mode regulation and single-mode realization in ZnO whispering gallery microcavities by the Vernier effect[J]. Nanoscale, 2016, 8(37):16631-16639. doi: 10.1039/C6NR04943E
    [24]
    贾博仑, 邓玲玲, 陈若曦, 等.利用Ag@SiO2纳米粒子等离子体共振增强发光二极管辐射功率的数值研究[J].物理学报, 2017, 66(23):237801. doi: 10.7498/aps.66.237801

    JIA B L, DENG L L, CHEN R X, et al.. Numerical research of emission properties of localized surface plasmon resonance enhanced light-emitting diodes based on Ag@SiO2 nanoparticles[J]. Acta Physica Sinica, 2017, 66(23):237801.(in Chinese) doi: 10.7498/aps.66.237801
    [25]
    SINGH S K, SINGHAL R. Thermal-induced SPR tuning of Ag-ZnO nanocomposite thin film for plasmonic applications[J]. Applied Surface Science, 2018, 439:919-926. doi: 10.1016/j.apsusc.2018.01.112
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article views(3220) PDF downloads(240) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return