Volume 12 Issue 3
Jun.  2019
Turn off MathJax
Article Contents
CHEN Kun, CAI Zhi-ming, SHI Xing-jian, DENG Jian-feng, YU Jin-pei, LI Hua-wang. Near-earth low-cost commercial satellite design for key technologies verification of the gravitational waves detection mission[J]. Chinese Optics, 2019, 12(3): 477-485. doi: 10.3788/CO.20191203.0477
Citation: CHEN Kun, CAI Zhi-ming, SHI Xing-jian, DENG Jian-feng, YU Jin-pei, LI Hua-wang. Near-earth low-cost commercial satellite design for key technologies verification of the gravitational waves detection mission[J]. Chinese Optics, 2019, 12(3): 477-485. doi: 10.3788/CO.20191203.0477

Near-earth low-cost commercial satellite design for key technologies verification of the gravitational waves detection mission

doi: 10.3788/CO.20191203.0477
Funds:

Strategic Priority Research Programme of CAS XDA1502070701

Strategic Priority Research Programme of CAS No.XDA1502070701, No.XDA1502070601

More Information
  • Corresponding author: CAI Zhi-ming, E-mail:caizm@microsate.com
  • Received Date: 05 Dec 2018
  • Rev Recd Date: 23 Jan 2019
  • Publish Date: 01 Jun 2019
  • Detecting gravitational waves on ground was limited by the noises such as surface vibration, gravity gradient and the test scale. The detection frequency band is limited to more than 10 Hz while the detection frequency band is mainly in the middle and low frequency band(0.1 mHz~1 Hz) for wave sources with larger feature quality and scale. So in order to avoid ground interference, detection from space is inevitably necessary. As gravitational wave signals are extremely weak and their required detection accuracy is extremely high, space gravitational wave detection projects represented by LISA was proposed by ESA and Taiji was proposed by the Chinese Academy of Sciences. However, both domestic and foreign proposed projects had extremely high requirements for satellite technical indicators, design complexity and cost. They were hard to achieve in the short term. This paper refers to the design of LISA pathfinder, designs a near-field low-cost commercial satellite for the verification requirements of gravitational wave detection key technologies, analyzes the satellite mission design and proposes ways to verify its structure, thermal and attitude control technologies. In this paper, a preliminary idea of commercial low-cost technology verification was proposed to provide reference for the design of space gravitational wave detection satellites.

     

  • loading
  • [1]
    ABBOTT B P, ABBOTT R, ABBOTT T D, et al.. Observation of gravitational waves from a binary black hole merger[J]. Physical Review Letters, 2016, 116(6):061102. doi: 10.1103/PhysRevLett.116.061102
    [2]
    WEINBERG S. Gravitation and Cosmology:Principles and Applications of the General Theory of Relativity[M]. New York:Wiley, 1972.
    [3]
    MISNER C W, THORNE K S, WHEELER J A. Gravitation[M]. San Francisco:Freeman and Company, 1973.
    [4]
    SALLUSTI M, GATH P, WEISE D, et al.. LISA system design highlights[J]. Classical and Quantum Gravity, 2009, 26(9):094015. doi: 10.1088/0264-9381/26/9/094015
    [5]
    龚雪飞, 徐生年, 袁业飞, 等.空间激光干涉引力波探测与早期宇宙结构形成[J].天文学进展, 2015, 33(1):59-83. doi: 10.3969/j.issn.1000-8349.2015.01.04

    GONG X F, XU SH N, YUAN Y F, et al.. Laser interferometric gravitational wave detection in space and structure formation in the early universe[J]. Pogress in Astronomy, 2015, 33(1):59-83.(in Chinese) doi: 10.3969/j.issn.1000-8349.2015.01.04
    [6]
    JENNRICH O, BINETRUY P, COLPI M, et al.. NGO(New Gravitational wave Observatory) assessment study report(Yellow Book)[R]. Cosmology and Extra-galactic Astrophysics, 2012.
    [7]
    NI W T. ASTROD-GW:Overview and progress[J]. International Journal of Modern Physics D, 2013, 22(1):1341004. doi: 10.1142/S0218271813410046
    [8]
    BENDER P L. Wavefront distortion and beam pointing for LISA[J]. Classical and Quantum Gravity, 2005, 22(10):S339-S346. doi: 10.1088/0264-9381/22/10/027
    [9]
    KAWAMURA S, NAKAMURA T, SETO N. Possibility of direct measurement of the acceleration of the universe using 0.1 Hz band laser interferometer gravitational wave antenna in space[J]. Physical Review Letters, 2001, 87(22):221103. doi: 10.1103/PhysRevLett.87.221103
    [10]
    万小波, 张晓敏, 黎明.天琴计划轨道构型长期漂移特性分析[J].中国空间科学技术, 2017, 37(3):110-116. http://d.old.wanfangdata.com.cn/Periodical/zgkjkxjs201703014

    WAN X B, ZHANG X M, LI M. Analysis of long-period drift characteristics for orbit configuration of the Tianqin mission[J]. Chinese Space Science and Technology, 2017, 37(3):110-116.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/zgkjkxjs201703014
    [11]
    胡戈锋, 薛力军.高性价比商业微小卫星研制探索[J].国际太空, 2018(1):39-42. doi: 10.3969/j.issn.1009-2366.2018.01.010

    HU G F, XUE L J. Research of cost-effective commercial micro satellites[J]. Space International, 2018(1):39-42.(in Chinese) doi: 10.3969/j.issn.1009-2366.2018.01.010
    [12]
    罗子人, 白姗, 边星, 等.空间激光干涉引力波探测[J].力学进展, 2013, 43(4):415-447. http://d.old.wanfangdata.com.cn/Periodical/twxjz201501004

    LUO Z R, BAI SH, BIAN X, et al.. Gravitational wave detection by space laser interferometry[J]. Advances in Mechanics, 2013, 43(4):415-447.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/twxjz201501004
    [13]
    王智, 马军, 李静秋.空间引力波探测计划-LISA系统设计要点[J].中国光学, 2015, 8(6):980-987. http://www.chineseoptics.net.cn/CN/abstract/abstract9334.shtml

    WANG ZH, MA J, LI J Q. Space-based gravitational wave detection mission: design highlights of LISA system[J]. Chinese Optics, 2015, 8(6):980-987.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9334.shtml
    [14]
    GATH P, SCHULTE H R, WEISE D. Challenges in the measurement and data-processing chain of the LISA mission[J]. Space Science Reviews, 2010, 151(1-3):61-73. doi: 10.1007/s11214-009-9604-8
    [15]
    SCHLEICHER A, ZIEGLER T, SCHUBERT R, et al.. In-orbit performance of the LISA Pathfinder drag-free and attitude control system[J]. CEAS Space Journal, 2018, 10(4):471-485. doi: 10.1007/s12567-018-0204-x
    [16]
    GIULICCHI L, WU S F, FENAL T. Attitude and orbit control systems for the LISA Pathfinder mission[J]. Aerospace Science and Technology, 2013, 24(1):283-294. doi: 10.1016/j.ast.2011.12.002
    [17]
    PAITA L, CESARI U, NANIA F, et al.. Alta FT-150: the thruster for LISA pathfinder and LISA/NGO missions[C]. Proceedings of the 9th LISA Symposium, Astronomical Society of the Pacific, 2012: 245-249.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article views(2069) PDF downloads(214) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return