Volume 12 Issue 2
Apr.  2019
Turn off MathJax
Article Contents
DU Yue-ning, CHEN Chao, QIN Li, ZHANG Xing, CHEN Yong-yi, NING Yong-qiang. Narrow linewidth external cavity semiconductor laser based on silicon photonic chip[J]. Chinese Optics, 2019, 12(2): 229-241. doi: 10.3788/CO.20191202.0229
Citation: DU Yue-ning, CHEN Chao, QIN Li, ZHANG Xing, CHEN Yong-yi, NING Yong-qiang. Narrow linewidth external cavity semiconductor laser based on silicon photonic chip[J]. Chinese Optics, 2019, 12(2): 229-241. doi: 10.3788/CO.20191202.0229

Narrow linewidth external cavity semiconductor laser based on silicon photonic chip

doi: 10.3788/CO.20191202.0229
Funds:

National Key R&D Program of China 2016YFE0126800

National Natural Scienece Foundation of China 61505206

National Natural Scienece Foundation of China 61674148

National Natural Scienece Foundation of China 51672264

National Natural Scienece Foundation of China 61727822

Science and Technology Development Project of Jilin Province 20150520089JH

Science and Technology Development Project of Jilin Province 20170204013GX

More Information
  • Corresponding author: CHEN Chao, E-mail:chenc@ciomp.ac.cn; QIN Li, E-mail:qinl@ciomp.ac.cn
  • Received Date: 21 Mar 2018
  • Rev Recd Date: 06 May 2018
  • Publish Date: 01 Apr 2019
  • With the development of ultra-high speed optical interconnection, coherent optical communication and coherent detection technology, more stringent requirements are put forward for the linewidth, power and stability of laser source. Based on their own different advantages of silicon photonic chip using CMOS(Complementary Metal Oxide Semiconductor) technology and semiconductor gain chip, the narrow linewidth semiconductor laser with compact structure, low power consumption and high stability can be realized by one single silicon photonic chip and one single semiconductor gain chip integrations, which becomes a hotspot in recent years. The structure can provide the optical feedback to narrow the linewidth by microring resonator, loop mirror and Mach-Zehnder interferometer, and realize the wide tuning range and stable output power. In this paper, the latest research progress of silicon photonic chip external cavity semiconductor laser and several structures containing microring resonators are introduced, and the technical problems, such as increasing the coupling efficiency and reducing the reflectivity of the end face, are discussed in detail. For future applications of space optical communication and optical interconnection, we prospect the future research direction of such lasers in power upgrading and photonic integration.

     

  • loading
  • [1]
    HUYNH T N, O'CARROLL J, SMYTH F, et al.. Low linewidth lasers for enabling high capacity optical communication systems[C]. Proceedings of the 14th International Conference on Transparent Optical Networks IEEE, 2012: 1-3.
    [2]
    MATSUI Y, ERIKSSON U, WESSTROM J O, et al.. Narrow linewidth tunable semiconductor laser[C]. Proceedings of 2016 Compound Semiconductor Week(CSW)[Includes 28th International Conference on Indium Phosphide & Related Materials(IPRM) & 43rd International Symposium on Compound Semiconductors(ISCS), IEEE, 2016: 1-2.
    [3]
    曾飞, 高世杰, 伞晓刚, 等.机载激光通信系统发展现状与趋势[J].中国光学, 2016, 9(1):65-73. http://www.chineseoptics.net.cn/CN/abstract/abstract9388.shtml

    ZENG F, GAO SH J, SAN X G, et al.. Development status and trend of airborne laser communication terminals[J]. Chinese Optics, 2016, 9(1):65-73.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9388.shtml
    [4]
    WICHT A, BAWAMIA A, KRVGER M, et al.. Narrow linewidth diode laser modules for quantum optical sensor applications in the field and in space[J]. Proceedings of SPIE, 2017, 10085:100850F. doi: 10.1117/12.2253655
    [5]
    张海洋, 赵长明, 蒋奇君, 等.基于相干激光雷达的激光微多普勒探测[J].中国激光, 2008, 35(12):1981-1985. doi: 10.3321/j.issn:0258-7025.2008.12.025

    ZHANG H Y, ZHAO CH M, JIANG Q J, et al.. Laser detection on micro-doppler effect in coherent ladar[J]. Chinese Journal of Lasers, 2008, 35(12):1981-1985.(in Chinese) doi: 10.3321/j.issn:0258-7025.2008.12.025
    [6]
    王直圆, 陈超, 单肖楠, 等.光纤光栅外腔半导体激光器噪声特性仿真[J].激光与光电子学进展, 2017, 54(1):011401. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201701020

    WANG ZH Y, CHEN CH, SHAN X N, et al.. Simulation of noise characteristics of fiber grating external cavity lasers[J]. Laser & Optoelectronics Progress, 2017, 54(1):011401.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201701020
    [7]
    AOYAMA K, YOSHIOKA R, YOKOTA N, et al.. Experimental demonstration of linewidth reduction of laser diode by compact coherent optical negative feedback system[J]. Applied Physics Express, 2014, 7(12):122701. doi: 10.7567/APEX.7.122701
    [8]
    IP E, KAHN J M, ANTHON D, et al.. Linewidth measurements of MEMS-based tunable lasers for phase-locking applications[J]. IEEE Photonics Technology Letters, 2005, 17(10):2029-2031. doi: 10.1109/LPT.2005.856435
    [9]
    OKAI M, SUZUKI M, TANIWATARI T. Strained multiquantum-well corrugation-pitch-modulated distributed feedback laser with ultranarrow(3.6 kHz) spectral linewidth[J]. Electronics Letters, 1993, 29(19):1696-1697. doi: 10.1049/el:19931128
    [10]
    佟存柱, 汪丽杰, 田思聪, 等.布拉格反射波导半导体激光器的研究[J].中国光学, 2015, 8(3):480-498. http://www.chineseoptics.net.cn/CN/abstract/abstract9311.shtml

    TONG C ZH, WANG L J, TIAN S C, et al.. Study on Bragg reflection waveguide diode laser[J]. Chinese Optics, 2015, 8(3):480-498.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9311.shtml
    [11]
    LIANG W, ILCHENKO V S, ELIYAHU D, et al.. Ultralow noise miniature external cavity semiconductor laser[J]. Nature Communications, 2015, 6:7371. doi: 10.1038/ncomms8371
    [12]
    ZHANG L, WEI F, SUN G W, et al.. Thermal tunable compact external cavity laser with thermal sensitivity enhanced FBG[C]. Proceedings of the Asia Communications and Photonics Conference, OSA, 2016: AF1F.7.
    [13]
    NUMATA K, ALALUSI M, STOLPNER L, et al.. Characteristics of the single-longitudinal-mode planar-waveguide external cavity diode laser at 1064 nm[J]. Optics Letters, 2014, 39(7):2101-2104. doi: 10.1364/OL.39.002101
    [14]
    REDDY U, DIAS N L, GARG A, et al.. A single spectral mode wide stripe laser with very narrow linewidth[J]. Applied Physics Letters, 2011, 99(17):171109. doi: 10.1063/1.3656024
    [15]
    FAN Y W, OLDENBEUVING R M, KLEIN E J, et al.. A hybrid semiconductor-glass waveguide laser[J]. Proceedings of SPIE, 2014:1051-1067.
    [16]
    OLDENBEUVING R M, KLEIN E J, OFFERHAUS H L, et al.. 25 kHz narrow spectral bandwidth of a wavelength tunable diode laser with a short waveguide-based external cavity[J]. Laser Physics Letters, 2013, 10(1):015804. doi: 10.1088/1612-2011/10/1/015804
    [17]
    王晓倩, 马可贞, 赵宇, 等.SOI多环级联光学谐振腔滤波器[J].发光学报, 2013, 34(5):645-649. http://d.old.wanfangdata.com.cn/Periodical/fgxb201305020

    WANG X Q, MA K ZH, ZHAO Y, et al.. SOI multi-ring cascade optic resonator filters[J]. Chinese Journal of Luminescence, 2013, 34(5):645-649.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fgxb201305020
    [18]
    潘碧玮, 余力强, 陆丹, 等.20 kHz窄线宽光纤光栅外腔半导体激光器[J].中国激光, 2015, 42(5):41-45. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjg201505007

    PAN B W, YU L Q, LU D, et al.. 20 kHz narrow linewidth fiber bragg grating external cavity semiconductor laser[J]. Chinese Journal of Lasers, 2015, 42(5):41-45.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjg201505007
    [19]
    周吉, 贺志宏, 于孝军, 等.硅基半导体多场耦合下的光传输及电调控特性分析[J].发光学报, 2016, 37(1):63-73. http://d.old.wanfangdata.com.cn/Periodical/fgxb201601011

    ZHOU J, HE ZH H, YU X J, et al.. Optical transmission and electrical modulation for silicone semiconductor with multi-field effect[J]. Chinese Journal of Luminescence, 2016, 37(1):63-73.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fgxb201601011
    [20]
    KITA T, TANG R, YAMADA H. Narrow spectral linewidth silicon photonic wavelength tunable laser diode for digital coherent communication system[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22(6):1500612.
    [21]
    CHU T, FUJIOKA N, ISHIZAKA M. Compact, lower-power-consumption wavelength tunable laser fabricated with silicon photonic wire waveguide micro-ring resonators[J]. Optics Express, 2009, 17(16):14063-14068. doi: 10.1364/OE.17.014063
    [22]
    SUZUKI K, KITA T, YAMADA H. Wavelength tunable laser diodes with Si-wire waveguide ring resonator wavelength filters[J]. Proceedings of SPIE, 2011, 7943:79431G. doi: 10.1117/12.874662
    [23]
    REN M, CAI H, TAO J F, et al.. A tunable laser using loop-back external cavity based on double ring resonators[C]. Proceedings of 2013 Transducers & Eurosensors Xxvii: the 17th International Conference on Solid-State Sensors, Actuators and Microsystems, IEEE, 2013: 1424-1427.
    [24]
    ZHAO J L, OLDENBEUVING R M, EPPING J P, et al.. Narrow-linewidth widely tunable hybrid external cavity laser using Si3N4/SiO2 microring resonators[C]. Proceedings of 2016 IEEE, International Conference on Group Ⅳ Photonics, IEEE, 2016: 24-25.
    [25]
    FAN Y W, EPPING J P, OLDENBEUVING R M, et al.. Optically integrated InP-Si3N4 hybrid laser[J]. IEEE Photonics Journal, 2016, 8(6):1505111.
    [26]
    FAN Y W, OLDENBEUVING R M, ROELOFFZEN C G, et al.. 290 Hz intrinsic linewidth from an integrated optical chip-based widely tunable InP-Si3N4 hybrid laser[C]. Proceedings of the Conference on Lasers and Electro-Optics, OSA, 2017: JTh5C.9.
    [27]
    HU Y, CAO W, TANG X SH, et al.. High power, high SMSR and wide tuning range silicon micro-ring tunable laser[J]. Optics Express, 2017, 25(7):8029-8035. doi: 10.1364/OE.25.008029
    [28]
    MATSUMOTO T, SUZUKI A, TAKAHASHI M, et al.. Narrow spectral linewidth full band tunable laser based on waveguide ring resonators with low power consumption[C]. Proceedings of 2010 Conference on Optical Fiber Communication (OFC/NFOEC), collocated National Fiber Optic Engineers Conference, IEEE, 2010: 1-3.
    [29]
    NEMOTO K, KITA T, YAMADA H. Narrow-spectral-linewidth wavelength-tunable laser diode with Si wire waveguide ring resonators[J]. Applied Physics Express, 2012, 5(8):082701. doi: 10.1143/APEX.5.082701
    [30]
    KITA T, NEMOTO K, YAMADA H. Narrow spectral linewidth and high output power Si photonic wavelength tunable laser diode[C]. Proceedings of the 10th, International Conference on Group Ⅳ Photonics, IEEE, 2013: 152-153.
    [31]
    KITA T, NEMOTO K, YAMADA H. Long external cavity Si photonic wavelength tunable laser diode[J]. Japanese Journal of Applied Physics, 2014, 53(4S):04EG04. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0235621424/
    [32]
    KOBAYASHI N, SATO K, NAMIWAKA M, et al.. Silicon photonic hybrid ring-filter external cavity wavelength tunable lasers[J]. Journal of Lightwave Technology, 2015, 33(6):1241-1246. doi: 10.1109/JLT.2014.2385106
    [33]
    SATO K, KOBAYASHI N, NAMIWAKA M, et al.. Demonstration of silicon photonic hybrid ring-filter external cavity wavelength tunable lasers[C]. Proceedings of 2015 European Conference on Optical Communication, IEEE, 2015: 1-3.
    [34]
    DEBREGEAS H, FERRARI C, CAPPUZZO M A, et al.. 2 kHz linewidth c-band tunable laser by hybrid integration of reflective SOA and SiO2 PLC external cavity[C]. Proceedings of 2014 International Semiconductor Laser Conference, IEEE, 2014: 50-51.
    [35]
    KITA T, NEMOTO K, YAMADA H. Silicon photonic wavelength-tunable laser diode with asymmetric Mach Zehnder interferometer[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(4):8201806. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0234429877/
    [36]
    KITA T, TANG R, YAMADA H. Compact silicon photonic wavelength-tunable laser diode with ultra-wide wavelength tuning range[J]. Applied Physics Letters, 2015, 106(11):111104. doi: 10.1063/1.4915306
    [37]
    TANG R, KITA T, YAMADA H. Narrow-spectral-linewidth silicon photonic wavelength-tunable laser with highly asymmetric Mach Zehnder interferometer[J]. Optics Letters, 2015, 40(7):1504-1507. doi: 10.1364/OL.40.001504
    [38]
    TSUCHIZAWA T, YAMADA K, FUKUDA H, et al.. Microphotonics devices based on silicon microfabrication technology[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11(1):232-240. doi: 10.1109/JSTQE.2004.841479
    [39]
    高峰, 秦莉, 陈泳屹, 等.弯曲波导研究进展及其应用[J].中国光学, 2017, 10(2):176-193. http://www.chineseoptics.net.cn/CN/abstract/abstract9481.shtml

    GAO F, QIN L, CHEN Y Y, et al.. Reseach progress of bent waveguide and its applications[J]. Chinese Optics, 2017, 10(2):176-193.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9481.shtml
    [40]
    QIU Y, XIAO X, LUO M, et al.. Tunable, narrow line-width silicon micro-ring laser source for coherent optical communications[C]. Proceedings of 2015 Conference on Lasers and Electro-Optics, IEEE, 2015: 1-2.
    [41]
    TOKUSHIMA M, KAWASHIMA H, HORIKAWA T, et al.. Post-integrated dual-core large-end spot-size converter with Si vertical taper for filter bull-coupling to Si-photonics chip[J]. Jourmal of Lightwave Technology, 2018:4783-4791.
    [42]
    LEE J H, BOVINGTON J, SHUBIN I, et al.. Demonstration of 12.2% wall plug efficiency in uncooled single mode external-cavity tunable Si/Ⅲ-Ⅴ hybrid laser[J]. Optics Express, 2015, 23(9):12079-12088. doi: 10.1364/OE.23.012079
    [43]
    GRIFFITH A G, LAU R K W, CARDENAS J, et al.. Silicon-chip mid-infrared frequency comb generation[J]. Nature communications, 2015, 6:6299. doi: 10.1038/ncomms7299
    [44]
    WATANABE S, TAKAHASHI M, SUZUKI K, et al.. High power tunable resonated-ring-reflector laser using passive alignment technology[C]. Proceedings of 2016 European Conference on Optical Communications, IEEE, 2006: 1-2.
    [45]
    TAKEUCHI T, TAKAHASHI M, SUZUKI K, et al.. Wavelength tunable laser with silica-waveguide ring resonators[J]. IEICE Transactions on Electronics, 2009, E92-C(2):198-204. doi: 10.1587/transele.E92.C.198
    [46]
    TANAKA S, JEONG S H, SEKIGUCHI S, et al.. High-output-power, single-wavelength silicon hybrid laser using precise flip-chip bonding technology[J]. Optics Express, 2012, 20(27):28057-28069. doi: 10.1364/OE.20.028057
    [47]
    FUJIOKA N, CHU T, ISHIZAKA M. Compact and low power consumption hybrid integrated wavelength tunable laser module using silicon waveguide resonators[J]. Journal of Lightwave Technology, 2010, 28(21):3115-3120. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0220013655/
    [48]
    LI J, SUN J Q, SHEN X. Theoretical and numerical models of tunable semiconductor ring laser using monolithically integrated microring reflector[J]. High Power Laser and Particle Beams, 2012, 24(2):315-320. doi: 10.3788/HPLPB
    [49]
    HUANG ZH, WANG Y. Selectable heterogeneous integrated Ⅲ~Ⅴ/SOI single mode laser based on vernier effect[C]. Proceedings of 2013 Conference on Lasers and Electro-Optics Pacific Rim, OSA, 2013: TuPM_3.
    [50]
    LI SH, WU Y D, YIN X J, et al.. Tunable filters based on an SOI nano-wire waveguide micro ring resonator[J]. Journal of Semiconductors, 2011, 32(8):084007. doi: 10.1088/1674-4926/32/8/084007
    [51]
    李霞, 王超, 余辉, 等.基于微环谐振腔的可调谐硅基反射腔镜[J].光学学报, 2016, 36(12):1223002. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201612034

    LI X, WANG CH, YU H, et al.. Tunable silicon reflection cavity mirror based on microring resonator[J]. Acta Optica Sinica, 2016, 36(12):1223002.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201612034
    [52]
    KASPER E.基于锗硅芯片的光电子学前景与挑战[J].光学与光电技术, 2010, 8(2):1-6. doi: 10.3969/j.issn.1672-3392.2010.02.001
    [62]
    KASPER E. Prospects and challenges of Si/Ge on-chip optoelectronic cells[J]. Optics & Optoelectronics Technology, 2010, 8(2):1-6.(in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)

    Article views(5826) PDF downloads(694) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return