Volume 12 Issue 1
Feb.  2019
Turn off MathJax
Article Contents
YU Tao-ying, LIU Xue-song, ANDREY D. Pryamikov, ALEXEY F. Kosolapov, ZHANG Hong-bo, FAN Zhong-wei. Femtosecond pulse compression using negative-curvature hollow-core fibers[J]. Chinese Optics, 2019, 12(1): 75-87. doi: 10.3788/CO.20191201.0075
Citation: YU Tao-ying, LIU Xue-song, ANDREY D. Pryamikov, ALEXEY F. Kosolapov, ZHANG Hong-bo, FAN Zhong-wei. Femtosecond pulse compression using negative-curvature hollow-core fibers[J]. Chinese Optics, 2019, 12(1): 75-87. doi: 10.3788/CO.20191201.0075

Femtosecond pulse compression using negative-curvature hollow-core fibers

doi: 10.3788/CO.20191201.0075
Funds:

National Natural Science Foundation of China 61605215

More Information
  • Author Bio:

    YU Tao-ying(1989—), male, from Luliang, Shanxi, has a Ph.D. and is mainly engaged in researching the characteristics of hollow-core fibers, ultrashort pulse technology and non-linear optics.E-mail:yutaoying@aoe.ac.cn

    FAN Zhong-wei(1965—), male, from Huadian, Jilin, is a researcher and doctoral tutor who mainly engages in researching solid-state laser technology and short-pulse laser technology. E-mail:fanzhongwei@aoe.ac.cn

  • Corresponding author: FAN Zhong-wei.E-mail:fanzhongwei@aoe.ac.cn
  • Received Date: 05 Mar 2018
  • Rev Recd Date: 16 Mar 2018
  • Publish Date: 01 Feb 2019
  • In order to compress femtosecond ultrashort pulses, a novel fiber called negative-curvature hollow-core fiber, is investigated and is used to compress the output of a Ti:Sapphire laser. Firstly, a hollow-core fiber with circular tubes cladding is introduced, and the loss parameter is calculated with the Finite Element Method and the calculated results are compared with the experimental results. Following this, the evolution of an ultrashort pulse along the fiber is simulated in the General Nonlinear Schrodinger Equation. At last the compression experiment using NC-HCF is conducted. The 160 fs output of a Ti:Sapphire laser is coupled into the fiber with high-pressure Argon. An output of 84 fs is achieved, which is the result of the balance between anomalous dispersion and self-phase modulation in the fiber. The experimental results matched the simulations. This novel fiber, which has the advantages of a high damage threshold, low and adjustable dispersion and nonlinear coefficients, is a promising material in the field of ultrafast optics.

     

  • loading
  • [1]
    PRYAMIKOV A D, BIRIUKOV A S, KOSOLAPOY A F, et al..Demonstration of a waveguide regime for a silica hollow-core microstructured optical fiber with a negative curvature of the core boundary in the spectral region >3.5μm[J].Opt.Express, 2011, 19(2):1441-1448. doi: 10.1364/OE.19.001441
    [2]
    WANG Y Y, COUNY F, ROBOERS P J, et al..Low loss broadband transmission in optimized core-shape Kagome hollow-core PCF[C].2010 Laser Science to Photonic Applications, San Jose, USA: CLEO, 2010: 1-2.
    [3]
    JAWORSKI P, YU F, MAIER R R J, et al..Picosecond and nanosecond pulse delivery through a hollow-core negative curvature fiber for micro-machining applications[J].Opt.Express, 2013, 21(19):22742-22753. doi: 10.1364/OE.21.022742
    [4]
    KOLYADIN A.N, ALAGASHEV G K, PRYAMIKOV A D, et al..Negative curvature hollow-core fibers:dispersion properties and femtosecond pulse delivery[J].Physics Procedia, 2015, 73:59-66. doi: 10.1016/j.phpro.2015.09.122
    [5]
    MICHIELETTO M, LYNGSE J K, JAKOBSEN C, et al..Hollow-core fibers for high power pulse delivery[J].Opt.Express, 2016, 24(7):7103-7119. doi: 10.1364/OE.24.007103
    [6]
    POLETTI F.Nested antiresonant nodeless hollow core fiber[J].Opt.Express, 2014, 22(20):23807-23828. doi: 10.1364/OE.22.023807
    [7]
    HABIB M S, BANG O, BACHE M.Low-loss single-mode hollow-core fiber with anisotropic anti-resonant elements[J].Opt.Express, 2016, 24(8):8429-8436. doi: 10.1364/OE.24.008429
    [8]
    MENG F C, LIU B W, LI Y F, et al..Low loss hollow-core antiresonant fiber with nested elliptical cladding elements[J].IEEE Photonics Journal, 2017, 9(1):1-11.
    [9]
    高寿飞, 汪莹莹, 刘小璐, 等.空芯反谐振光纤及其高功率超短脉冲传输[J].中国激光, 2017, 44(2):0201012.

    GAO SH F, WANG Y Y, LIU X L, et al..Hollow-core anti-resonant fiber and its use for propagation of high power ultrafast pulse[J].Chinese Journal of Lasers, 2017, 44(2):0201012.(in Chinese)
    [10]
    GEHBARDT M, GAIDA C, HEUERMANN T, et al..Nonlinear pulse compression to 43 W GW-class few-cycle pulses at 2μm wavelength[J].Optics Lett., 2017, 42(20):4179-4182. doi: 10.1364/OL.42.004179
    [11]
    AZHAR M, WONG G K L, CHANG W, et al..Raman-free nonlinear optical effects in high pressure gas-filled hollow core PCF[J].Opt.Express, 2013, 21(4):4405-4410. doi: 10.1364/OE.21.004405
    [12]
    GEROME F, DUPRIEZ P, CLOWES J, et al..High power tunable femtosecond soliton source using hollow-core photonic bandgap fiber, and its use for frequency doubling[J].Opt.Express, 2008, 16(4):2381-2386. doi: 10.1364/OE.16.002381
    [13]
    LU J, HUANG ZH Y, WANG D, et al..Nonlinear compression of picosecond chirped pulse from thin-disk amplifier system through a gas-filled hollow-core fiber[J].Chinese Physics B, 2016, 25(12):124207. doi: 10.1088/1674-1056/25/12/124207
    [14]
    GEBHARDT M, GAIDA C, STUTZKI F, et al..High average power nonlinear self-compression to few-cycle pulses at 2μm wavelength in antiresonant hollow-core fiber[C].Advanced Solid State Lasers Congress, Nagoya, Japan: ASSL, 2017: ATh3A.6.
    [15]
    ZURCH M, SOLLAPUR R, KARTASHOV D, et al..Multi-octave supercontinuum driven by soliton explosion in dispersion-designed antiresonant hollow-core fibers[C].Lasers and Electro-Optics, San Jose, USA: CLEO, 2017: 1-2.
    [16]
    GONZALEZ B N, TORRES G I, ARZATE N, et al..Pulse quality analysis on soliton pulse compression and soliton self-frequency shift in a hollow-core photonic bandgap fiber[J].Opt.Express, 2013, 21(7):9132-9143. doi: 10.1364/OE.21.009132
    [17]
    LEGSGAARD J, ROBERTS P J.Dispersive pulse compression in hollow-core photonic bandgap fibers[J].Opt.Express, 2008, 16(13):9628-9644. doi: 10.1364/OE.16.009628
    [18]
    乔自文, 高炳荣, 陈岐岱, 等.飞秒超快光谱技术及其互补使用[J].中国光学, 2014, 7(4):588-599. http://www.chineseoptics.net.cn/CN/abstract/abstract9168.shtml

    QIAO Z W, GAO B R, CHEN Q D, et al..Ultrafast spectroscopy techniques and their complementary usages[J].Chinese Optics, 2014, 7(4):588-599.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9168.shtml
    [19]
    EMAURY F, DUTIN C F, SARACENO C J, et al..Beam delivery and pulse compression to sub-50 fs of a mode locked thin-disk laser in a gas-filled Kagome-type HC-PCF fiber[J].Opt.Express, 2013, 21(4):4986-4994. doi: 10.1364/OE.21.004986
    [20]
    MAK K F, SEIDEL M, PRONIN O, et al..Compressing μJ-level pulses from 250 fs to sub-10 fs at 38-MHz repetition rate using two gas-filled hollow-core photonic crystal fiber stages[J].Opt.Lett., 2015, 40(7):1238-1241. doi: 10.1364/OL.40.001238
    [21]
    AGRAWAL G P.Nonlinear Fiber Optics[M].Heidelberg:Springer Berlin Heidelberg, 2000.
    [22]
    DUGUAY M A, KOKUBUN Y, KOCH T L, et al..Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures[J].Appl.Phys.Lett., 2002, 49(18):1592-1594.
    [23]
    JOHN L.光导在折射率引导光纤、多孔光纤、光子带隙光纤和纳米线中的简要定性解释[J].中国光学, 2014, 7(3):499-508.(in English) http://www.chineseoptics.net.cn/CN/abstract/abstract9155.shtml

    JOHN L.Simple qualitative explanations for light guidance in index-guiding fibres, holey fibres, photonic band-gap fibres and nanowires[J].Chinese Optics, 2014, 7(3):499-508. http://www.chineseoptics.net.cn/CN/abstract/abstract9155.shtml
    [24]
    POLYANSKIY M N.Refractive index database.https://refractiveindex.info[OL].
    [25]
    SMITH A V, DO B T.Bulk and surface laser damage of silica by picosecond and nanosecond pulses at 1064 nm[J].Appl.Opt., 2008, 47(26):4812-4832. doi: 10.1364/AO.47.004812
    [26]
    王竞, 李健中, 温伟峰, 等.利用自相关方法实现光脉冲时间延迟精确测量[J].中国光学, 2015, 8(2):270-276. http://html.rhhz.net/ZGGX/html/gx20150214.htm

    WANG J, LI J ZH, WEN W F, et al..Precisely measuring for optical pulse time delay using autocorrelation[J].Chinese Optics, 2015, 8(2):270-276.(in Chinese) http://html.rhhz.net/ZGGX/html/gx20150214.htm
    [27]
    陈雪坤, 张璐, 吴志勇.空间激光与单模光纤和光子晶体光纤的耦合效率[J].中国光学, 2013, 6(2):208-215. http://www.chineseoptics.net.cn/CN/abstract/abstract8891.shtml

    CHEN X K, ZHANG L, WU ZH Y.Coupling efficiency of free-space laser coupling into single mode fiber and photonic crystal fiber[J].Chinese Optics, 2013, 6(2):208-215.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract8891.shtml
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article views(2802) PDF downloads(246) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return