Volume 12 Issue 1
Feb.  2019
Turn off MathJax
Article Contents
YU Hang-hang, CHEN Fei, LI Yao-biao, HE Yang, PAN Qi-kun, XIE Ji-jiang, YU De-yang, LU Qi-peng. Research progress on the two-photon absorption alkali vapor laser[J]. Chinese Optics, 2019, 12(1): 38-47. doi: 10.3788/CO.20191201.0038
Citation: YU Hang-hang, CHEN Fei, LI Yao-biao, HE Yang, PAN Qi-kun, XIE Ji-jiang, YU De-yang, LU Qi-peng. Research progress on the two-photon absorption alkali vapor laser[J]. Chinese Optics, 2019, 12(1): 38-47. doi: 10.3788/CO.20191201.0038

Research progress on the two-photon absorption alkali vapor laser

doi: 10.3788/CO.20191201.0038
Funds:

Defense Innovation Fund of Chinese Academy of Sciences CXJJ-16M228

Young and Middle-Aged Science and Technology Innovation Leader and Team Project in Jilin Province 20170519012JH

Major Scientific and Technological Bidding in Jilin Province 20160203016GX

More Information
  • Corresponding author: CHEN Fei. E-mail:13021908922@163.com
  • Received Date: 26 Oct 2017
  • Rev Recd Date: 02 Dec 2017
  • Publish Date: 01 Feb 2019
  • Blue-violet lasers and mid-infrared lasers play an important role in the fields of basic research and defense engineering. Single-photon absorption alkali vapor lasers have recently become an area of high interest in laser research for their key advantages, such as high quantum efficiency, large stimulated emission cross-sections and effective thermal management performance. At present, they have achieved an output power reaching 1 kW. Two-photon absorption alkali vapor lasers have attracted increasing attention for their blue-violet laser and mid-infrared laser cascade output characteristics. In this paper, research progress on the two-photon absorption alkali vapor laser is reviewed with regards to alkali atomic density, pump laser power, polarization and frequency offset, controlling laser etc.. The reasons for any influence these factors have on output are then analyzed. Finally, predictions on the future development of the two-photon absorption alkali vapor laser are provided.

     

  • loading
  • [1]
    XU D, CHEN F, GUO J, et al.. Investigation on 447.3 nm blue-violet laser by extra-cavity frequency doubling of a diode-pumped cesium vapor laser[J]. Optics & Laser Technology, 2016, 83(83):119-124. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=26544a72068ae357052027554a9fb070
    [2]
    PAYNE S A, BEACH R J, DAWSON J W, et al Diode pumped alkali vapor fiber laser: US, US7082148[P]. 2006.
    [3]
    WANG Y, AN G. Reviews of a Diode-Pumped Alkali Laser(DPAL):a potential high powered light source[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2015, 9521:95211U-95211U-13.
    [4]
    ZWEIBACK J, KOMASHKO A, KRUPKE W F. Alkali-vapor lasers[C]. SPIE LASE, International Society for Optics and Photonics, 2010: 75810G-75810G-5.
    [5]
    ZHDANOV B V, VENUS G, SMIRNOV V, et al.. Continuous wave Cs diode pumped alkali laser pumped by single emitter narrowband laser diode[J]. Review of Scientific Instruments, 2015, 86(8):021010-1126. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=abcc5f40cc272279115176d110f76ec7
    [6]
    ZHDANOV B, EHRENREICH T, KNIZE R J. Efficient Optically Pumped Cesium Vapor Laser[J]. Optics Communications, 2006, 260(2):696-698. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ027187384/
    [7]
    KRUPKE W F, BEACH R J, KANZ V K, et al.. Resonance transition 795-nm rubidium laser[J]. Optics Letters, 2003, 28(23):2336-2338. doi: 10.1364/OL.28.002336
    [8]
    WANG R, YANG Z, WANG H, et al.. Methane-based in situ temperature rise measurement in a diode-pumped rubidium laser[J]. Optics Letters, 2017, 42(4):667-670. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3510a80044f92bb8618a7d665e74d092
    [9]
    KRUPKE W F. Diode pumped alkali laser: US, 6643311[P]. 2003.
    [10]
    EHRENREICH T, ZHDANOV B, TAKEKOSHI T, et al.. Diode pumped caesium laser[J]. Electronics Letters, 2005, 41(7):415-416. doi: 10.1049/el:20058388
    [11]
    BOGACHEV A V. Diode-pumped caesiumvapour laser with closed-cycle laser-active medium circulation[J]. Quantum Electronics, 2012, 42(2):95-98. doi: 10.1070/QE2012v042n02ABEH014734
    [12]
    HURD E J, HOLTGRAVE J C, PERRAM G P. Intensity scaling of an optically pumped potassium laser[J]. Optics Communications, 2015, 357:63-66. doi: 10.1016/j.optcom.2015.08.087
    [13]
    张元生, 徐亮, 陈方, 等.机载定向红外对抗系统的中波红外激光器及关键技术[J].电光与控制, 2017, 24(5):56-59. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20172017060700001121

    ZHANG Y SH, XU L, CHEN F, et al.. Mid-Infrared lasers used in airborne directed infrared countermeasures systems and its key technologies[J]. Electronics Optics & Control, 2017, 24(5):56-59.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20172017060700001121
    [14]
    WELLS J, KAO C, JANSEN E D, et al.. Application of infrared light for in vivo neural stimulation[J]. Journal of Biomedical Optics, 2005, 10(6):064003. doi: 10.1117/1.2121772
    [15]
    KASPARIAN J M, WOLF J P. Physics and applications of atmospheric nonlinear optics and filamentation[J]. Optics Express, 2008, 16(1):466-493.
    [16]
    李充, 谢冀江, 潘其坤, 等.中红外光学参量振荡器技术进展[J].中国光学, 2016, 9(06):615-624. http://html.rhhz.net/ZGGX/html/gx20160601.htm

    LI C, XIE J J, PAN Q K, et al.. Progress of mid-infrared optical parametric oscillator[J]. Chinese Optics, 2016, 9(06):615-624.(in Chinese) http://html.rhhz.net/ZGGX/html/gx20160601.htm
    [17]
    李会梅, 刘刚, 马殿旭, 等.红外光谱结合统计分析研究鉴别不同品种菜豆[J].光学与光电技术, 2015, 13(5):58-63. http://d.old.wanfangdata.com.cn/Periodical/gxygdjs201505013

    LI H M, LIU G, MA D X, et al.. Differentiation of six species of phaseolus vulgaris by infrared spectroscopy combined with statistical analysis[J]. Optics & Optoelectronic Technology, 2015, 13(5):58-63.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxygdjs201505013
    [18]
    袁林光, 薛战理, 李宏光, 等.低温状态下的材料法向发射率测量[J].光学 精密工程, 2016, 24(1):59-64. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201601009

    YUAN L G, XUE Z L, LI H G, et al.. Measurement of normal emissivity of materials at low temperature[J]. Opt. Precision Eng., 2016, 24(1):59-64.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201601009
    [19]
    朱祥, 张志伟, 张文静, 等.基于激光外差干涉的金属微振动检测[J].光学与光电技术, 2016, 14(6):22-25. http://d.old.wanfangdata.com.cn/Periodical/gxygdjs201606006

    ZHU X, ZHANG ZH W, ZHANG W J, et al.. Micro-Vibration metal detection based on laser heterodyne interferometer[J]. Optics & Optoelectronic Technology, 2016, 14(6):22-25.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxygdjs201606006
    [20]
    汪鑫, 杜辉, 王兆港, 等.基于激光光源的4K超高清DLP投影光学引擎的设计[J].光学与光电技术, 2017, 15(2):14-19. http://d.old.wanfangdata.com.cn/Periodical/gxygdjs201702004

    WANG X, DU H, WANG Z G, et al.. Design of 4K UHD DLP optical engine based on laser light source[J]. Optics & Optoelectronic Technology, 2017, 15(2):14-19.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxygdjs201702004
    [21]
    崔建丰, 高涛, 张亚男, 等.全固态210 nm准连续深紫外激光器[J].光学 精密工程, 2016, 24(10s):212-215.

    CUI J F, GAO T, ZHANG Y N, et al.. All-solid-state 210 nm quasi-continuous deep ultraviolet laser[J]. Opt. Precision Eng., 2016, 24(10s):212-215.(in Chinese)
    [22]
    SHIMODA R, SAKATA Y, FUJISE T, et al.. The adenoma miss rate of blue-laser imaging vs. white-light imaging during colonoscopy:a randomized tandem trial[J]. Endoscopy, 2017, 49(2):186-190.
    [23]
    CHEN M F, HO Y S, CHUNG C K, et al.. Examination of the developed scanning system for red-green-blue laser projector with a feedback control[J]. Optical Review, 2011, 18(1):128-131. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5bec7576d04d50ab82bcf1b280c8ad9e
    [24]
    TOGASHI K, NEMOTO D, UTANO K, et al.. Blue laser imaging endoscopy system for the early detection and characterization of colorectal lesions:a guide for the endoscopist[J]. Therapeutic Advances in Gastroenterology, 2016, 9(1):50-56. doi: 10.1177/1756283X15603614
    [25]
    ZIBROV A S, LUKIN M D, HOLLBERG L, et al.. Efficient frequency up-conversion in resonant coherent media[J]. Phys. Rev. A, 2002, 65(5):882-886.
    [26]
    MEIJER T, WHITE J D, SMEETS B, et al.. Blue five-level frequency-upconversion system in rubidium[J]. Optics Letters, 2006, 31(7):1002-1004. doi: 10.1364/OL.31.001002
    [27]
    AKULSHIN A M, MCLEAN R J, SIDOROV A I, et al.. Coherent and collimated blue light generated by four-wave mixing in Rbvapour[J]. Optics Express, 2009, 17(25):22861-22870. doi: 10.1364/OE.17.022861
    [28]
    AKULSHIN A M, OREL A A, MCLEAN R J. Collimated blue light enhancement in velocity-selective pumped Rbvapour[J]. Journal of Physics B Atomic Molecular & Optical Physics, 2012, 45(1):015401.
    [29]
    AKULSHIN A, PERRELLA C, TRUONG G W, et al.. Frequency evaluation of collimated blue light generated by wave mixing in Rbvapour[J]. Journal of Physics B Atomic Molecular & Optical Physics, 2012, 45(24):245503-245509.
    [30]
    WALKER G, ARNOLD A S, FRANKEARNOLD S. Frequency translation of orbital angular momentum in four-wave mixing[R]. 2012(No.arXiv: 1203.1520).
    [31]
    AKULSHIN A M, NOVIKOVA I, MIKHAILOV E E, et al.. Arithmetic with optical topological charges in stepwise-excited Rb vapor[J]. Optics Letters, 2016, 41(6):1146-1149. doi: 10.1364/OL.41.001146
    [32]
    YONG SUP IHN, KWANG-KYOON PARK, YOSEP KIM, et al.. Intensity correlation in frequency upconversion via four-wave mixing in rubidium vapor[J]. Journal of the Optical Society of America B, 2017, 34(11):2352-2357. doi: 10.1364/JOSAB.34.002352
    [33]
    SCHULTZ J T, ABEND S, D RING D, et al.. Coherent 455 nm beam production in a cesium vapor[J]. Optics Letters, 2009, 34(15):2321-2323. doi: 10.1364/OL.34.002321
    [34]
    DEPAOLA B D, SELL J F, GEARBA M A, et al.. Collimated blue and infrared beams generated by two-photon excitation in Rb vapor[J]. Optics Letters, 2013, 39(3):528-531. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=89eb1f7ebc36bd547b5fff3c2217304a
    [35]
    VERNIER A, FRANKEARNOLD S, RⅡS E, et al.. Enhanced frequency up-conversion in Rb vapor[J]. Optics Express, 2009, 18(16):17020. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_0911.0812
    [36]
    SULHAM C V, PITZ G A, PERRAM G P. Blue and infrared stimulated emission from alkali vapors pumped through two-photon absorption[J]. Applied Physics B:Lasers and Optics, 2010, 101(1-2):57-63. doi: 10.1007/s00340-010-4015-9
    [37]
    AKULSHIN A, BUDKER D, MCLEAN R. Directional infrared emission resulting from cascade population inversion and four-wave mixing in Rb vapor[J]. Optics Letters, 2014, 39(4):845-848. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=098f12c4e0dba5d3dcbf7e788203d2bf
    [38]
    AKULSHIN A, BUDKER D, MCLEAN R J. Amplified spontaneous emission in two-photon excited Rb vapour[C]. Icono/lat, 2016.
    [39]
    AKULSHIN A M, BUDKER D, MCLEAN R J. Parametric wave mixing enhanced by velocity insensitive two-photon excitation in Rbvapour[J]. Journal of the Optical Society of America B, 2017, 34(5):1016-1022. doi: 10.1364/JOSAB.34.001016
    [40]
    AKULSHIN A M, NAFIA R, SUSLOV S A, et al.. Amplified spontaneous emission at 5.23μm in two-photon excited rubidium vapor[J]. Journal of the Optical Society of America B, 2017, 34(12):2478-2484. doi: 10.1364/JOSAB.34.002478
    [41]
    谭彦楠, 李义民, 公发全, 等.双光子吸收420 nm碱金属蒸气蓝光激光器[J].中国激光, 2013, 40(10):54-57.

    TAN Y N, LI Y M, GONG F Q, et al.. 420 nm Alkali blue laser based on two-photon absorption[J]. Chinese Journal of Lasers, 2013, 40(10):54-57.(in Chinese)
    [42]
    GAI B, CAI H, YANG J, et al.. Efficient generation of collimated frequency upconversion blue light in rubidium vapor[J]. Chinese Optics Letters, 2015, 13(12):67-70.
    [43]
    GAI B, CAO R, XIA X, et al.. Modulation of a double-line frequency up-conversion process in cesium vapor[J]. Applied Physics B, 2016, 122(6):1-7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9aa7f3b6964042e631b4ed6b85cc2df2
    [44]
    BREKKE E, ALDERSON L. Parametric four-wave mixing using a single cw laser[J]. Optics Letters, 2013, 38(12):2147-2149. doi: 10.1364/OL.38.002147
    [45]
    KARGAPOL'TSEV, SERGEI V, VELICHANSKY, et al.. Optical cascade pumping of the 7P3/2 level in cesium atoms[J]. Quantum Electronics, 2005, 35(7):591-597. doi: 10.1070/QE2005v035n07ABEH003570
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article views(3140) PDF downloads(294) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return