Volume 11 Issue 6
Dec.  2018
Turn off MathJax
Article Contents
XING Bo, YU Zu-jun, XU Xi-ning, ZHU Li-qiang. Rail defect monitoring based on laser Doppler frequency shift theory[J]. Chinese Optics, 2018, 11(6): 991-1000. doi: 10.3788/CO.20181106.0991
Citation: XING Bo, YU Zu-jun, XU Xi-ning, ZHU Li-qiang. Rail defect monitoring based on laser Doppler frequency shift theory[J]. Chinese Optics, 2018, 11(6): 991-1000. doi: 10.3788/CO.20181106.0991

Rail defect monitoring based on laser Doppler frequency shift theory

doi: 10.3788/CO.20181106.0991
Funds:

National Key Research and Development Program of China 2016YFB1200401

Foundamental Research Funds for the Central Universities 2016RC004

More Information
  • Corresponding author: XU Xi-ning, E-mail: xuxining@bjtu.edu.cn
  • Received Date: 11 Sep 2018
  • Rev Recd Date: 15 Oct 2018
  • Publish Date: 01 Dec 2018
  • The flaw detection equipment applied on railway in China can only be inspected at the time of maintenance-skylight and cannot be on-line monitored at the present stage. A detection method of rail internal defects based on ultrasonic guided waves and laser Doppler frequency shift theory is proposed.First, the semi-analytical finite element method is improved by adding the environment temperature as a variable. The method is used to obtain the dispersion curve of the CHN60 rail in China at a specific temperature. Then, the modes which are suitable for the detection of defects and incentive methods have been selected through combining the analysis of mode shape with stimulation and response algorithm. Then, the laser is divided into reference light and measuring light by semi-transparent mirror. The measurement light is irradiated on the rail surface through Bragg Cell, and the change curve of the light intensity is obtained by the Doppler shift of reflected light and the interference of the reference light. The echo velocity signal of the internal defect of the rail is measured by signal processing and calibration. While this mode is stimulated and propagating in the railroad, the position of the defect can be detected after digital signal processing. Finally, the research group has conducted field experiments on the Beijing Ring Railway Experimental Base and verified the feasibility of the method. It shows that the error in defect location is less than 0.5 m. Using laser Doppler frequency shift method for guided wave signals to locate defects can effectively avoid the error caused by transducer contact measurement. It not only guarantees the normal operation of the train, but also realizes the all-weather on-line monitoring without interruption, which improves the detection efficiency.

     

  • loading
  • [1]
    田贵云, 高斌, 高运来, 等.铁路钢轨缺陷伤损巡检与监测技术综述[J].仪器仪表学报, 2016, 37(8):1763-1780. doi: 10.3969/j.issn.0254-3087.2016.08.008

    TIAN G Y, GAO B, GAO Y L, et al.. Review of railway rail defect non-destructive testing and monitoring[J]. Chinese Journal of Scientific Instrument, 2016, 37(8):1763-1780.(in Chinese) doi: 10.3969/j.issn.0254-3087.2016.08.008
    [2]
    王时丽.基于机器视觉的钢轨表面缺陷检测技术研究[D].西南科技大学, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10004-1017043513.htm

    WANG SH L. Research on flaw detection technology of rail surface based on machine vision[D]. Southwest University of Science and Technology, 2016.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10004-1017043513.htm
    [3]
    杨国涛.钢轨探伤车探伤作业系统自主化研究[J].铁道建筑, 2016(9):124-126. http://d.old.wanfangdata.com.cn/Periodical/tdjz201609031

    YANG G T. Study on the autonomy of inspection system for rail flaw detection vehicle[J]. Railway Construction, 2016(9):124-126.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/tdjz201609031
    [4]
    冯超, 黎双周, 范中原.基于轨道电路原理的断轨检测方法研究[J].兰州工业学院学报, 2015, 22(4):75-77. doi: 10.3969/j.issn.1009-2269.2015.04.017

    FENG CH, LI SH ZH, FAN ZH Y. Research on track fault detection method based on the principle of track circuit[J]. Journal of Lanzhou Institute of Industry, 2015, 22(4):75-77.(in Chinese) doi: 10.3969/j.issn.1009-2269.2015.04.017
    [5]
    李文超, 张丕状.超声波检测钢轨缺陷及定位的研究[J].核电子学与探测技术, 2012, 32(9):1062-1065. doi: 10.3969/j.issn.0258-0934.2012.09.016

    LI W CH, ZHANG P ZH. Research on ultrasonic inspection of rail defects and positioning[J]. Nuclear Electronics & Detection Technology, 2012, 32(9):1062-1065.(in Chinese) doi: 10.3969/j.issn.0258-0934.2012.09.016
    [6]
    MAZZOTTI M, MARZANI A, BARTOLI I, et al.. Guided waves dispersion analysis for prestressed viscoelastic waveguides by means of the SAFE method[J]. International Journal of Solids and Structures, 2012, 49:2359-2372. doi: 10.1016/j.ijsolstr.2012.04.041
    [7]
    吴斌, 符浩, 何存富.超声导波虚拟相控聚焦方法研究[J].仪器仪表学报, 2013, 34(3):509-516. doi: 10.3969/j.issn.0254-3087.2013.03.005

    WU B, FU H, HE C F. Ultrasonic guided wave inspection based on synthetic phase control method[J]. Chinese Journal of Scientific Instrument, 2013, 34(3):509-516.(in Chinese) doi: 10.3969/j.issn.0254-3087.2013.03.005
    [8]
    李秀明, 黄战华, 李翔宇, 等.二维点列式激光多普勒法测量物体速度[J].光学精密工程, 2014, 22(10):2627-2632. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201410008

    LI X M, HUANG ZH H, LI X Y, et al.. Two-dimensional point laser Doppler velocimeter for velocity measurement[J]. Opt. Precision Eng., 2014, 22(10):2627-2632.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201410008
    [9]
    李一博, 靳世久, 孙立.超声导波在管道中的传播特性的研究[J].电子测量与仪器学报, 2005, 19(5):63-66. http://d.old.wanfangdata.com.cn/Periodical/dzclyyqxb200505016

    LI Y B, JIN SH J, SUN L. Study on propagation characteristics of ultrasonic guided wave in pipeline[J]. Journal of Electronic Measurement and Instrument, 2005, 19(5):63-66.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/dzclyyqxb200505016
    [10]
    雷正, 涂君, 邱公喆, 等.外加应力下超声导波传播特性仿真研究[J].仪表技术与传感器, 2017(6):125-128. doi: 10.3969/j.issn.1002-1841.2017.06.030

    LEI ZH, TU J, QIU G ZH, et al.. Simulation study on transmitting characteristics of ultrasonic guided wave under external stress[J]. Instrument Technique and Sensor, 2017(6):125-128.(in Chinese) doi: 10.3969/j.issn.1002-1841.2017.06.030
    [11]
    LOVEDAY P W. Semi-analytical finite element analysis of elastic waveguides subjected to axial loads[J]. Ultrasonics, 2009, 49(3):298-300. doi: 10.1016/j.ultras.2008.10.018
    [12]
    ALESSANDRO MARZANI. Time-transient response for ultrasonic guided waves propagating in damped cylinders[J]. International Journal of Solids and Structures, 2008, 45:6347-6368. doi: 10.1016/j.ijsolstr.2008.07.028
    [13]
    HAYASHI T, SONG W J, ROSE J L. Guided wave dispersion curves for a bar with an arbitrary cross-section, a rod and rail example[J]. Ultrasonics, 2003, 41:175-183. doi: 10.1016/S0041-624X(03)00097-0
    [14]
    许西宁, 郭保青, 余祖俊, 等.半解析有限元法求解钢轨中超声导波频散曲线[J].仪器仪表学报, 2014, 35(10):2392-2398. http://d.old.wanfangdata.com.cn/Periodical/yqyb201410032

    XU X N, GUO B Q, YU Z J, et al.. Semi-analytical finite elements method for calculating dispersion curves of ultrasonic guided waves in a rail[J]. Chinese Journal of Scientific Instrument, 2014, 35(10):2392-2398.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/yqyb201410032
    [15]
    卢耀荣.无缝线路研究与应用[M].北京:中国铁道出版社, 2010:47-48.

    LU Y R. Research and Application of Continuous Welded Rail Track[M]. Beijing:China Railway Publishing House, 2010:47-48.(in Chinese)
    [16]
    ROSE J L, AVIOLI M J, MUDGE P, et al. Guided wave inspection potential of defects in rail[J]. NDT&E International, 2004(37):153-161. http://www.sciencedirect.com/science/article/pii/S0963869503001063
    [17]
    朱力强, 许西宁, 余祖俊, 等.基于超声导波的钢轨完整性检测方法研究[J].仪器仪表学报, 2016, 37(7):1603-1609. doi: 10.3969/j.issn.0254-3087.2016.07.021

    ZHU L Q, XU X N, YU Z J, et al.. Study on the method for monitoring railway integrity based on ultrasonic guided waves[J]. Chinese Journal of Scientific Instrument, 2016, 37(7):1603-1609.(in Chinese) doi: 10.3969/j.issn.0254-3087.2016.07.021
    [18]
    李翔, 陈实.时频结合的失真度测量方法研究[J].国外电子测量技术, 2017, 36(1):27-30. doi: 10.3969/j.issn.1002-8978.2017.01.008

    LI X, CHEN SH. Research on time-frequency conjoined scheme for distortion measurement[J]. Foreign Electronic Measurement Technology, 2017, 36(1):27-30.(in Chinese) doi: 10.3969/j.issn.1002-8978.2017.01.008
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(1)

    Article views(2564) PDF downloads(197) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return