Volume 11 Issue 6
Dec.  2018
Turn off MathJax
Article Contents
DENG Yong-li, LI Qing, HUANG Xue-jie. Analysis of laser cutting of lithium-ion power battery pole piece[J]. Chinese Optics, 2018, 11(6): 974-982. doi: 10.3788/CO.20181106.0974
Citation: DENG Yong-li, LI Qing, HUANG Xue-jie. Analysis of laser cutting of lithium-ion power battery pole piece[J]. Chinese Optics, 2018, 11(6): 974-982. doi: 10.3788/CO.20181106.0974

Analysis of laser cutting of lithium-ion power battery pole piece

doi: 10.3788/CO.20181106.0974
Funds:

Science and Technology Service Network Initiative:Research on the key Production Technology of Innovative Power Battery Y7A5010101

Industrial Strong Foundation Engineering of MIIT 2013: the Basic Platform of Lithium-ion Power Battery Process Equipment Technology 

More Information
  • Corresponding author: DENG Yong-li, E-mail:dengyongli@gziit.ac.cn
  • Received Date: 14 Sep 2018
  • Rev Recd Date: 05 Jun 2018
  • Publish Date: 01 Dec 2018
  • In order to meet the demand of lithium-ion battery industry, and to seek a high-efficiency and high-quality cutting method, the cutting quality by various lasers are investigated. Comparing with the image measuring instrument and SEM, it is found that the burr and heat-affected zone(HAZ) of aluminum foil cut by Q-type 1 064 nm fiber laser with 100 ns pulse width are about 15 μm and 60 μm, and the HAZ of negative copper foil is about 200 μm, the burr and HAZ of aluminum foil cut by MOPA fiber laser with 20 ns pulse width are 10 μm and 20 μm, respectively, and the HAZ of copper foil is about 70 μm. The burr and HAZ of aluminum foil cut by 10 picoseconds pulsed solid laser are about 6 μm and 10 μm separately, a zone of no melting and re-condensation is achieved when copper foil is cut. The HAZ of aluminum foil are about 10 μm and 17 μm respectively when they are cut by 355 nm UV and 532 nm green solid lasers with 20 ns pulsed width. However, the HAZ are more than 70 μm and 100 μm when cutting copper foil. The experimental results show that the narrower the pulse width and the higher the repetition frequency, the better the cutting quality of pole piece. The PS laser cuts the pole piece with the highest precision and the best quality, which is the most ideal laser for cutting the pole piece. At present, the MOPA fiber laser with high frequency and relatively narrow pulse width has the highest cutting speed, and the cut positive electrode piece fully meets the industrial requirements, and is more suitable for the industrial promotion of the pole piece cutting.

     

  • loading
  • [1]
    戴永年, 杨斌, 姚耀春, 等.锂离子电发展状况[J].电池, 2005, 35(6):193-195. http://d.old.wanfangdata.com.cn/Periodical/dc200503013

    DAI Y N, YANG B, YAO Y CH, et al.. Development status of lit-ion batteries[J]. Battery Bimonthly, 2005, 35(6):193-195.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/dc200503013
    [2]
    朱洪波, 李艳华, 郝明明, 等.基于偏振复用技术的半导体激光加工光纤耦合模块[J].光学精密工程, 2013, 21(5):1137-1143. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201305007

    ZHU B, LI Y H, HAO M M, et al.. Fiber coupled diode laser module for laser processing by polarization multiplexing[J]. Opt. Precision Eng., 2013, 21(5):1137-1143.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201305007
    [3]
    刘杰, 杨永强, 苏旭彬, 等.多零件选区激光熔化成型效率的优化[J].光学精密工程, 2012, 20(4):699-705. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201204003

    LIU J, YANG Y Q, SU X B, et al.. Efficiency optimization of selective laser melting for multi-parts[J]. Opt. Precision Eng., 2012, 20(4):699-705.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201204003
    [4]
    KAWATAS, SUN H B, TANAKA T, et al.. Finer features for functional micro devices-micromachines can be created with higher resolution using two-photo absorption[J]. Nature, 2001, 412(6848):697-698. doi: 10.1038/35089130
    [5]
    LEE D, PATWA R, HERFURTH H, et al.. High speed remote laser cutting of electrodes for lithium-ion batteries:anode[J]. Journal of Power Sources, 2013, 240:368-380. doi: 10.1016/j.jpowsour.2012.10.096
    [6]
    刘峰, 王立君, 王玉恒, 等.金属材料表面激光耦合系数的反演[J].光学精密工程, 2011, 19(2):421-428. http://d.old.wanfangdata.com.cn/Conference/7426813

    LIU F, WANG L J, WANG Y H, et al.. Inversion for laser coupling coefficient on metal material surfaces[J]. Opt. Precision Eng., 2011, 19(2):421-428.(in Chinese) http://d.old.wanfangdata.com.cn/Conference/7426813
    [7]
    金国藩, 李景镇.激光测量学[M].北京:科学出版社, 1998.

    JIN G F, LI J ZH. Laser Metrology[M]. Beijing:Science Press, 1998.(in Chinese)
    [8]
    陆建, 倪晓武, 贺安之.激光与材料相互作用物理学[M].北京:机械工业出版社, 1996.

    LU J, NI X W, HE A ZH. Physics of Interaction Between Laser and Materials[M]. Beijing:Mechanical Industry Press, 1996.(in Chinese)
    [9]
    LUTEY AHA, FORTUNATO A, ASCARI, et al.. Laser cutting of lithium iron phosphate battery electrodes:characterization of process efficiency and quality[J]. Optics & Laser Technology, 2015, 65:164-174. http://www.sciencedirect.com/science/article/pii/S0030399214002035
    [10]
    金国藩, 李景镇.激光测量学[M].北京:科学出版社, 1998.

    JIN G F, LI J ZH. Laser Metrology[M]. Beijing:Science Press, 1998.(in Chinese)
    [11]
    浦诺威, 张冬云.激光制造工艺:基础、展望和创新应用实例[M].北京:清华大学出版社, 2008.

    POPRAWE R, ZHANG D Y. Lasertechnik Fur Die Fertigung[M]. Beijing:Tsinghua University Press, 2008.(in Chinese)
    [12]
    陈家璧, 彭润玲.激光原理及应用[M].北京:电子工业出版社, 2013.

    CHEN J B, PENG R L. Principle and Application of Laser[M]. Beijing:Electronic Industry Press, 2013.(in Chinese)
    [13]
    季凌飞, 凌晨, 李秋瑞, 等.皮秒激光工程应用研究现状与发展分析[J].机械工程学报, 2014, 50(5):115-126. http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201405016

    JI L F, LING CH, LI Q R, et al.. Research progress and development of industrial application of pico second laser processing[J]. Journal of Mechanical Engineering, 2014, 50(5):115-126.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201405016
    [14]
    陈发良, 李东海.基于Fokker-Planck方程的电介质材料短脉冲激光破坏机制分析[J].强激光和粒子束, 2011, 23(2):334-338. http://d.old.wanfangdata.com.cn/Periodical/qjgylzs201102011

    CHEN F L, LI D H. Mechanism of short-pulse laser induced damage in dielectric based on Fokker-Planck equation[J]. High Power Laser and Particle Beams, 2011, 23(2):334-338. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/qjgylzs201102011
    [15]
    顾理, 孙会来, 于楷, 等.飞秒激光微加工的研究进展[J].激光与红外, 2013, 43(1):14-18. doi: 10.3969/j.issn.1001-5078.2013.01.003

    GU L, SUN H L, YU K, et al..Research progress of micro-nanofabrication by femtosecond laser[J]. Laser & Infrared, 2013, 43(1):14-18.(in Chinese) doi: 10.3969/j.issn.1001-5078.2013.01.003
    [16]
    HÜTTNER B, ROHR G. On the theory of ps and sub-ps laser pulse interaction with metals:Ⅰ.surface temperature[J]. Applied Surface Science, 1996, 103(3):269-274 doi: 10.1016/0169-4332(96)00523-5
    [17]
    何飞, 程亚.飞秒激光微加工:激光精密加工领域的新前沿[J].中国激光, 2007, 34(5):595-622. doi: 10.3321/j.issn:0258-7025.2007.05.001

    HE F, CHENG Y. Femtosecond laser micromachining:frontier in laser precision micromachining[J]. Chinese Journal of Laser, 2007, 34(5):595-622.(in Chinese) doi: 10.3321/j.issn:0258-7025.2007.05.001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article views(4179) PDF downloads(466) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return