Volume 11 Issue 3
Jun.  2018
Turn off MathJax
Article Contents
WANG Xiao-yun, LI Bo, CHEN Li, LI Di, QU Song-nan, LI Zhi-min. Carbon nanodots and their composites for biomedical applications[J]. Chinese Optics, 2018, 11(3): 401-419. doi: 10.3788/CO.20181103.0401
Citation: WANG Xiao-yun, LI Bo, CHEN Li, LI Di, QU Song-nan, LI Zhi-min. Carbon nanodots and their composites for biomedical applications[J]. Chinese Optics, 2018, 11(3): 401-419. doi: 10.3788/CO.20181103.0401

Carbon nanodots and their composites for biomedical applications

doi: 10.3788/CO.20181103.0401
Funds:

National Natural Science Foundation of China 51602304

the 13th Five-Year Plan for Edu- cation Department of Jilin Province JJKH20180232KJ

More Information
  • Corresponding author: LI Zhi-min, E-mail:zhimin@jlu.edu.cn
  • Received Date: 23 Jan 2018
  • Rev Recd Date: 28 Mar 2018
  • Publish Date: 01 Jun 2018
  • As an emerging carbon nanomaterial, carbon nanodots(CNDs) have many advantages such as low preparation cost, small size, low toxicity, high biocompatibility, good water solubility, easy modification, unique photophysical properties, and exhibit unique advantages and application prospects in the field of biomedicine. Taking advantage of the abundant surface functional groups, carbon nanodots can interact with functional theranostic agents such as targeting ligands, contrast agents in medical imaging, nucleic acids, chemical drugs, photosensitizers, and photothermal conversion reagents to form composites. Currently, bioluminescent imaging applications of carbon nanodots and their composites in biomedical theranostic fields such as medical imaging, gene therapy, chemotherapy, photothermal therapy, and photodynamic therapy are widely studied and reported. These researches are of great significance to the development of medical theranostic reagents based on carbon nanodots and their clinical advancement, and provide a novel drug system for the advancement of individualized, visualized, non-invasive, and minimally invasive diagnosis and treatment of major human diseases. This paper focuses on the design, construction and performance of carbon nanodots and their composites used in the field of theranostics. In addition, the research progress of the reported carbon nanodots based theranostic reagents in the biomedical field is discussed and summarized.

     

  • loading
  • [1]
    LIM S Y, SHEN W, GAO Z. Carbon quantum dots and their applications[J]. Chemical Society Reviews, 2015, 44(1):362-381. doi: 10.1039/C4CS00269E
    [2]
    BAKER S N, BAKER G A. Luminescent carbon nanodots:emergent nanolights[J]. Angewandte Chemie International Edition, 2010, 49(38):6726-6744. doi: 10.1002/anie.200906623
    [3]
    LI X, RUI M, SONG J, SHEN Z, et al.. Carbon and graphene quantum dots for optoelectronic and energy devices:a review[J]. Advanced Functional Materials, 2015, 25(31):4929-4947. doi: 10.1002/adfm.v25.31
    [4]
    ZHAO A, CHEN Z, ZHAO C, et al.. Recent advances in bioapplications of C-dots[J]. Carbon, 2015, 85:309-327. doi: 10.1016/j.carbon.2014.12.045
    [5]
    HOLA K, ZHANG Y, WANG Y, et al.. Carbon dots-emerging light emitters for bioimaging, cancer therapy and optoelectronics[J]. Nano Today, 2014, 9(5):590-603. doi: 10.1016/j.nantod.2014.09.004
    [6]
    ZHENG X T, ANANTHANARAYANAN A, LUO K Q, et al.. Glowing graphene quantum dots and carbon dots:properties, syntheses, and biological applications[J]. Small, 2015, 11(14):1620-1636. doi: 10.1002/smll.v11.14
    [7]
    LECROY G E, YANG S T, YANG F, et al.. Functionalized carbon nanoparticles:syntheses and applications in optical bioimaging and energy conversion[J]. Coordination Chemistry Reviews, 2016, 320-321:66-81. doi: 10.1016/j.ccr.2016.02.017
    [8]
    DING C, ZHU A, TIAN Y. Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging[J]. Accounts of Chemical Research, 2014, 47(1):20-30. doi: 10.1021/ar400023s
    [9]
    LUO P G, SAHU S, YANG S-T, et al.. Carbon "quantum" dots for optical bioimaging[J]. Journal of Materials Chemistry B, 2013, 1(16):2116-2127. doi: 10.1039/c3tb00018d
    [10]
    ZHANG J, YU S H. Carbon dots:large-scale synthesis, sensing and bioimaging[J]. Materials Today, 2016, 19(7):382-393. doi: 10.1016/j.mattod.2015.11.008
    [11]
    FAN Z, LI S, YUAN F, et al.. Fluorescent graphene quantum dots for biosensing and bioimaging[J]. RSC Advances, 2015, 5(25):19773-19789. doi: 10.1039/C4RA17131D
    [12]
    MIAO P, HAN K, TANG Y, et al.. Recent advances in carbon nanodots:synthesis, properties and biomedical applications[J]. Nanoscale, 2015, 7(5):1586-1595. doi: 10.1039/C4NR05712K
    [13]
    WEGNER K D, HILDEBRANDT N. Quantum dots:bright and versatile in vitro and in vivo fluorescence imaging biosensors[J]. Chemical Society Reviews, 2015, 44(14):4792-4834. doi: 10.1039/C4CS00532E
    [14]
    LEMENAGER G, DE LUCA E, SUN Y P, et al.. Super-resolution fluorescence imaging of biocompatible carbon dots[J]. Nanoscale, 2014, 6(15):8617-8623. doi: 10.1039/C4NR01970A
    [15]
    GEORGAKILAS V, PERMAN J A., TUCEK J, et al.. Broad family of carbon nanoallotropes:classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures[J]. Chemical Reviews, 2015, 115(11):4744-4822. doi: 10.1021/cr500304f
    [16]
    XU X, RAY R, GU Y, et al.. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[J]. Journal of the American Chemical Society, 2004, 126(40):12736-12737. doi: 10.1021/ja040082h
    [17]
    SUN Y P, ZHOU B, LIN Y, et al.. Quantum-sized carbon dots for bright and colorful photoluminescence[J]. Journal of the American Chemical Society, 2006, 128(24):7756-7757. doi: 10.1021/ja062677d
    [18]
    ZHU S, MENG Q, WANG L, et al.. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging[J]. Angewandte Chemie International Edition, 2013, 52(14):3953-3957. doi: 10.1002/anie.v52.14
    [19]
    QU S, WANG X, LU Q, et al.. A biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots[J]. Angewandte Chemie International Edition, 2012, 51(49):12215-12218. doi: 10.1002/anie.v51.49
    [20]
    LI D, HAN D, QU S N, et al.. Supra-(carbon nanodots) with a strong visible to near-infraredabsorption band and efficient photothermal conversion[J]. Light-Science & Applications, 2016, 5:e16120. https://www.researchgate.net/publication/304707406_Supra-carbon_nanodots_with_a_strong_visible_to_near-infrared_absorption_band_and_efficient_photothermal_conversion
    [21]
    QU S, ZHOU D, LI D, et al.. Toward efficient orange emissive carbon nanodots through conjugated sp(2)-domain controlling and surface charges engineering[J]. Advanced Materials, 2016, 28(18):3516-3521. doi: 10.1002/adma.201504891
    [22]
    LU J, YEO P S E., GAN C K, et al.. Transforming C60 molecules into graphene quantum dots[J]. Nature Nanotechnology, 2011, 6(4):247-252. doi: 10.1038/nnano.2011.30
    [23]
    YANG Y, WU D, HAN S, et al.. Bottom-up fabrication of photoluminescent carbon dots with uniform morphology via a soft-hard template approach[J]. Chemical Communications, 2013, 49(43):4920-4922. doi: 10.1039/c3cc38815h
    [24]
    QU S, SHEN D, LIU X, et al.. Highly luminescent carbon-nanoparticle-based materials:factors influencing photoluminescence quantum Yield[J]. Particle & Particle Systems Characterization, 2014, 31(11):1175-1182. http://cn.bing.com/academic/profile?id=6718076f0004ed337be93ab035390b0b&encoded=0&v=paper_preview&mkt=zh-cn
    [25]
    DING H, YU S B, WEI J S, et al.. Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism[J]. ACS Nano, 2016, 10(1):484-491. doi: 10.1021/acsnano.5b05406
    [26]
    LECROY G E, SONKAR S K, YANG F, et al.. Toward structurally defined carbon dots as ultracompact fluorescent probes[J]. ACS Nano, 2014, 8(5):4522-4529. doi: 10.1021/nn406628s
    [27]
    ZHU L, CUI X, WU J, et al.. Fluorescence immunoassaybased on carbon dots as labels for the detection of hu -man immunoglobulin G[J]. Analytical Methods, 2014, 6(12):4430-4436. doi: 10.1039/C4AY00717D
    [28]
    ZHENG M, LIU S, LI J, et al.. Integrating oxaliplatin with highly luminescent carbon dots:an unprecedented theranostic agent for personalized medicine[J]. Advanced Materials, 2014, 26(21):3554-3560. doi: 10.1002/adma.v26.21
    [29]
    LOU Q, QU S, JING P, et al.. Water-triggered luminescent "nano-bombs" based on supra-(carbon nanodots)[J]. Advanced Materials, 2015, 27(8):1389-1394. doi: 10.1002/adma.201403635
    [30]
    娄庆, 曲松楠.基于超级碳点的水致荧光"纳米炸弹"[J].中国光学, 2015, 8(1):91-98. http://www.chineseoptics.net.cn/CN/abstract/abstract9260.shtml

    LOU Q, QU S N. Water triggered luminescent "nano-bombs" based on supra-carbon-nanodots[J]. Chinese Optics, 2015, 8(1):91-98.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9260.shtml
    [31]
    LIU W, LI C, REN Y, et al.. Carbon dots:surface engineering and applications[J]. Journal of Materials Chemistry B, 2016, 4(35):5772-5788. doi: 10.1039/C6TB00976J
    [32]
    SUDOLSKá M, DUBECKY M, SARKAR S, et al.. Nature of absorption bands in oxygen-functionalized graphitic carbon dots[J]. The Journal of Physical Chemistry C, 2015, 119(23):13369-13373. doi: 10.1021/acs.jpcc.5b04080
    [33]
    WANG Y, KALYTCHUK S, ZHANG Y, et al.. Thickness-dependent full-color emission tunability in a flexible carbon dot ionogel[J]. The Journal Of Physical Chemistry Letters, 2014, 5(8):1412-1420. doi: 10.1021/jz5005335
    [34]
    PAN L, SUN S, ZHANG A, et al.. Truly fluorescent excitation-dependent carbon dots and their applications in multicolor cellular imaging and multidimensional sensing[J]. Advanced Materials, 2015, 27(47):7782-7787. doi: 10.1002/adma.201503821
    [35]
    ZHANG F, LIU F, WANG C, et al.. Effect of lateral size of graphene quantum dots on their properties and application[J]. ACS Applied Materials & Interfaces, 2016, 8(3):2104-2110. http://cn.bing.com/academic/profile?id=f9e20ca7361314cbe0b2e8bae0301ab8&encoded=0&v=paper_preview&mkt=zh-cn
    [36]
    VINCI J C, FERRER I M, SEEDHOUSE S J, et al. Hidden properties of carbon dots revealed after HPLC fractionation[J]. The Journal of Physical Chemistry Letters, 2013, 4(2):239-243. doi: 10.1021/jz301911y
    [37]
    PAN L, SUN S, ZHANG L, et al.. Near-infrared emissive carbon dots for two-photon fluorescence bioimaging[J]. Nanoscale, 2016, 8(39):17350-17356. doi: 10.1039/C6NR05878G
    [38]
    WANG X, CAO L, LU F, et al.. Photoinduced electron transfers with carbon dots[J]. Chemical Communications, 2009(25):3774-3776. doi: 10.1039/b906252a
    [39]
    JIANG K, ZHANG L, LU J, et al.. Triple-mode emission of carbon dots:applications for advanced anti-counterfeiting[J]. Angewandte Chemie International Edition, 2016, 55(25):7231-7235. doi: 10.1002/anie.201602445
    [40]
    DENG Y, ZHAO D, CHEN X, et al.. Long lifetime pure organic phosphorescence based on water soluble carbon dots[J]. Chemical Communications, 2013, 49(51):5751-5753. doi: 10.1039/c3cc42600a
    [41]
    LI Q, ZHOU M, YANG Q, et al.. Efficient room-temperature phosphorescence from nitrogen-doped carbon dots in composite matrices[J]. Chemical Materials, 2016, 28(22):8221-8227. doi: 10.1021/acs.chemmater.6b03049
    [42]
    CAO L, WANG X, MEZIANI M J, et al.. Carbon dots for multiphoton bioimaging[J]. Journal of the American Chemical Society, 2007, 129(37):11318-11319. doi: 10.1021/ja073527l
    [43]
    RUAN S, QIAN J, SHEN S, et al. A simple one-step method to prepare fluorescent carbon dots and their potential application in non-invasive glioma imaging[J]. Nanoscale, 2014, 6(17):10040-10047. doi: 10.1039/C4NR02657H
    [44]
    ZHENG M, RUAN S, LIU S, et al.. Self-targeting fluorescent carbon dots for diagnosis of brain cancer cells[J]. ACS Nano, 2015, 9(11):11455-11461. doi: 10.1021/acsnano.5b05575
    [45]
    WU L, CAI X, NELSON K, et al.. A green synthesis of carbon nanoparticle from honey for real-time photoacoustic imaging[J]. Nano Research, 2013, 6(5):312-325. doi: 10.1007/s12274-013-0308-8
    [46]
    GE J, LAN M, ZHOU B, et al.. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation[J]. Nature Communications, 2014, 5:4536. doi: 10.1038/ncomms5536
    [47]
    GE J, JIA Q, LIU W, et al.. Red-emissive carbon dots for fluorescent, photoacoustic, and thermal theranostics in living mice[J]. Advanced Materials, 2015, 27(28):4169-4177. doi: 10.1002/adma.v27.28
    [48]
    GE J, JIA Q, LIU W, et al.. Carbon dots with intrinsic theranostic properties for bioimaging, red-light-triggered photodynamic/photothermal simultaneous therapy in vitro and in vivo[J]. Advanced Healthcare Materials, 2016, 5(6):665-675. doi: 10.1002/adhm.201500720
    [49]
    ZHENG M, LI Y, LIU S, et al.. One-pot to synthesize multifunctional carbon dots for near infrared fluorescence imaging and photothermal cancer therapy[J]. ACS Applied Materials & Interfaces, 2016, 8(36):23533-23541. http://cn.bing.com/academic/profile?id=3b5a295a63939846170a6164a756fdbf&encoded=0&v=paper_preview&mkt=zh-cn
    [50]
    SUN H, GAO N, DONG K, et al.. Graphene quantum dots-band-aids used for wound disinfection[J]. ACS Nano, 2014, 8(6):6202-6210. doi: 10.1021/nn501640q
    [51]
    李欣远, 纪穆为, 王虹智, 等.近红外光热转换纳米晶研究进展[J].中国光学, 2017, 10(5):541-554. http://www.chineseoptics.net.cn/CN/abstract/abstract9545.shtml

    LI X Y, JI M W, WANG H ZH, et al.. Research progress of near-infrared photothermal conversion nanocrystals[J]. Chinese Optics, 2017, 10(5):541-554.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9545.shtml
    [52]
    苗少峰, 杨虹, 黄远辉, 等.光声成像研究进展[J].中国光学, 2015, 8(5):699-713. http://www.chineseoptics.net.cn/CN/abstract/abstract9338.shtml

    MIAO SH F, YANG H, Huang Y H, et al.. Research progresses of photoacoustic imaging[J]. Chinese Optics, 2015, 8(5):699-713.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9338.shtml
    [53]
    张砚, 汪源源, 李伟, 等.基于全变分法重建光声图像[J].光学精密工程, 2012, 20(1):204-212. http://www.opticsjournal.net/abstract.htm?id=OJ120214000041sYu2x5

    ZHANG Y, WANG Y Y, LI W, et al.. Reconstruction of photoacoustic image based on total variation[J]. Opt. Precision Eng., 2012, 20(1):204-212.(in Chinese) http://www.opticsjournal.net/abstract.htm?id=OJ120214000041sYu2x5
    [54]
    SHI Y, PAN Y, ZHONG J, et al.. Facile synthesis of gadolinium(Ⅲ) chelates functionalized carbon quantum dots for fluorescence and magnetic resonance dual-modal bioimaging[J].Carbon, 2015, 93:742-750. doi: 10.1016/j.carbon.2015.05.100
    [55]
    XU Y, JIA X H, YIN X B, et al.. Carbon quantum dot stabilized gadolinium nanoprobe prepared via a one-pot hydrothermal approach for magnetic resonance and fluorescence dual-modality bioimaging[J]. Analytical Chemistry, 2014, 86(24):12122-12129. doi: 10.1021/ac503002c
    [56]
    CHEN H, WANG G D, TANG W, et al.. Gd-encapsulated carbonaceous dots with efficient renal clearance for magnetic resonance imaging[J]. Advanced Materials, 014, 26(39):6761-6766. http://cn.bing.com/academic/profile?id=ac7d56e968bcb2d1fb0fc5d682aaeaaf&encoded=0&v=paper_preview&mkt=zh-cn
    [57]
    CHEN H, WANG G D, SUN X, et al.. Mesoporous silica as nanoreactors to prepare gd-encapsulated carbon dots of controllable sizes and magnetic properties[J]. Advanced Functional Materials, 2016, 26(22):3973-3982. doi: 10.1002/adfm.v26.22
    [58]
    REN X, LIU L, LI Y, et al.. Facile preparation of gadolinium chelates functionalized carbon quantum dot based contrast agent for magnetic resonance/fluorescence multimodal imaging[J]. Journal of Materials Chemistry B, 2014, 2(34):5541-5549. doi: 10.1039/C4TB00709C
    [59]
    LIAO H, WANG Z, CHEN S, et al.. One-pot synthesis of gadolinium(Ⅲ) doped carbon dots for fluorescence/magnetic resonance bimodal imaging[J]. RSC Advances, 2015, 5(82):66575-66581. doi: 10.1039/C5RA09948J
    [60]
    SRIVASTAVA S, AWASTHI R, TRIPATHI D, et al.. Magnetic-nanoparticle-doped carbogenic nanocomposite:an effective magnetic resonance/fluorescence multimodal imaging probe[J]. Small, 2012, 8(7):1099-1109. doi: 10.1002/smll.201101863
    [61]
    MARSHALL E. Gene therapy death prompts review of adenovirus vector[J]. Science, 1999, 286(5448):2244. doi: 10.1126/science.286.5448.2244
    [62]
    SAKURAI H, KAWABATA K, SAKURAI F, et al.. Innate immune response induced by gene delivery vectors[J]. International Journal of Pharmaceutics, 2008, 354(1-2):9-15. doi: 10.1016/j.ijpharm.2007.06.012
    [63]
    WANG L, WANG X, BHIRDE A, et al.. Carbon-dot-based two-photon visible nanocarriers for safe and highly efficient delivery of siRNA and DNA[J]. Advanced Healthcare Materials, 2014, 3(8):1203-1209. doi: 10.1002/adhm.v3.8
    [64]
    LIU C, ZHANG P, ZHAI X, et al.. Nano-carrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence[J]. Biomaterials, 2012, 33(13):3604-3613. doi: 10.1016/j.biomaterials.2012.01.052
    [65]
    KIM J, PARK J, KIM H, et al.. Transfection and intracellular trafficking properties of carbon dot-gold nanoparticle molecular assembly conjugated with PEI-pDNA[J]. Biomaterials, 2013, 34(29):7168-7180. doi: 10.1016/j.biomaterials.2013.05.072
    [66]
    HU L, SUN Y, LI S, et al.. Multifunctional carbon dots with high quantum yield for imaging and gene delivery[J]. Carbon, 2014, 67:508-513. doi: 10.1016/j.carbon.2013.10.023
    [67]
    PIERRAT P, WANG R, KERESELIDZE D, et al. Efficient in vitro and in vivo pulmonary delivery of nucleic acid by carbon dot-based nanocarriers[J]. Biomaterials, 2015, 51:290-302. doi: 10.1016/j.biomaterials.2015.02.017
    [68]
    KARTHIK S, SAHA B, GHOSH S K, et al.. Photoresponsive quinoline tethered fluorescent carbon dots for regulated anticancer drug delivery[J]. Chemical Communications, 2013, 49(89):10471-10473. doi: 10.1039/c3cc46078a
    [69]
    WANG H, KE F, MARARENKO A, et al.. Responsive polymer-fluorescent carbon nanoparticle hybrid nanogels for optical temperature sensing, near-infrared light-responsive drug release, and tumor cell imaging[J]. Nanoscale, 2014, 6(13):7443-7452. doi: 10.1039/C4NR01030B
    [70]
    HE L, WANG T, AN J, et al.. Carbon nanodots@zeolitic imidazolate framework-8 nanoparticles for simultaneous pH-responsive drug delivery and fluorescence imaging[J]. Cryst. Eng. Comm., 2014, 16(16):3259-3263. doi: 10.1039/c3ce42506a
    [71]
    PANDEY S, MEWADA A, THAKUR M, et al.. Cysteamine hydrochloride protected carbon dots as a vehicle for the efficient release of the anti-schizophrenic drug haloperidol[J]. RSC Advances, 2013, 3(48):6290-26296. http://cn.bing.com/academic/profile?id=fca925f41926c87ac8c3e0248e976ce7&encoded=0&v=paper_preview&mkt=zh-cn
    [72]
    WANG Q, HUANG X, LONG Y, et al.. Hollow luminescent carbon dots for drug delivery[J]. Carbon, 2013, 59:192-199. doi: 10.1016/j.carbon.2013.03.009
    [73]
    ZHOU L, LI Z, LIU Z, et al.. Luminescent carbon dot-gated nanovehicles for pH-triggered intracellular controlled release and imaging[J]. Langmuir, 2013, 29(21):6396-6403. doi: 10.1021/la400479n
    [74]
    MEWADA A, PANDEY S, THAKUR M, et al.. Swarming carbon dots for folic acid mediated delivery of doxorubicin and biological imaging[J]. Journal of Materials Chemistry B, 2014, 2(6):698-705. doi: 10.1039/C3TB21436B
    [75]
    WANG C, WU C, ZHOU X, et al.. Enhancing cell nucleus accumulation and DNA cleavage activity of anti-cancer drug via graphene quantum dots[J]. Scientific Reports, 2013, 3:2852. doi: 10.1038/srep02852
    [76]
    FAHMI M Z, CHEN J K, HUANG C C, et al.. Phenylboronic acid-modified magnetic nanoparticles as a platform for carbon dot conjugation and doxorubicin delivery[J]. Journal of Materials Chemistry B, 2015, 3(27):5532-5543. doi: 10.1039/C5TB00289C
    [77]
    ZENG Q. SHAO D, HE X, et al.. Carbon dots as a trackable drug delivery carrier for localized cancer therapy in vivo[J]. Journal of Materials Chemistry B, 2016, 4(30):5119-5126. doi: 10.1039/C6TB01259K
    [78]
    GONG X, ZHANG Q, GAO Y, et al.. Phosphorus and nitrogen dual-doped hollow carbon dot as a nanocarrier for doxorubicin delivery and biological imaging[J]. ACS Applied Materials & Interfaces, 2016, 8(18):11288-11297. http://cn.bing.com/academic/profile?id=a44fcbb97915c42f82e63e651c5b3a22&encoded=0&v=paper_preview&mkt=zh-cn
    [79]
    CHEN H, WANG Z, ZONG S, et al.. A graphene quantum dot-based FRET system for nuclear-targeted and real-time monitoring of drug delivery[J]. Nanoscale, 2015, 7(37):15477-15486. doi: 10.1039/C5NR03454J
    [80]
    XU X, ZHANG K, ZHAO L, et al.. Aspirin-based carbon dots, a good biocompatibility of material applied for bioimaging and anti-inflammation[J]. ACS Applied Materials & Interfaces, 2016, 8(48):32706-32716. http://cn.bing.com/academic/profile?id=98e6908cba7edb47edadb7f59b7605a8&encoded=0&v=paper_preview&mkt=zh-cn
    [81]
    DOLMANS D E J G J, FUKUMURA D, JAIN R K. Photodynamic therapy for cancer[J]. Nature Reviews Cancer, 2003, 3(5):380-387. doi: 10.1038/nrc1071
    [82]
    HUANG P, LIN J, WANG X, et al.. Light-triggered theranostics based on photosensitizer-conjugated carbon dots for simultaneous enhanced-fluorescence imaging and photodynamic therapy[J]. Advanced Materials, 2012, 24(37):5104-5110. doi: 10.1002/adma.201200650
    [83]
    BEACK S, KONG W H, JUNG H S, et al.. Photodynamic therapy of melanoma skin cancer using carbon dot-chlorin e6-hyaluronate conjugate[J]. Acta Biomaterialia, 2015, 26:295-305. doi: 10.1016/j.actbio.2015.08.027
    [84]
    WANG J, ZHANG Z, ZHA S, et al.. Carbon nanodots featuring efficient FRET for two-photon photodynamic cancer therapy with a low fs laser power density[J]. Biomaterials, 2014, 35(34):9372-9381. doi: 10.1016/j.biomaterials.2014.07.063
    [85]
    ZHOU L, ZHOU L, GE X, et al.. Multicolor imaging and the anticancer effect of a bifunctional silica nanosystem based on the complex of graphene quantum dots and hypocrellin A[J]. Chemical Commununications, 2015, 51(2):421-424. http://cn.bing.com/academic/profile?id=8201254b55e9f07c6dc5eb28a32805d8&encoded=0&v=paper_preview&mkt=zh-cn
    [86]
    CHOI Y, KIM S, CHOI M H, et al.. Highly biocompatible carbon nanodots for simultaneous bioimaging and targeted photodynamic therapy in vitro and in vivo[J]. Advanced Functional Materials, 2014, 24(37):5781-5789. doi: 10.1002/adfm.201400961
    [87]
    VOGEL A, VENUGOPALAN V. Mechanisms of pulsed laser ablation of biological tissues[J]. Chemical Reviews, 2003, 103(2):577-644. doi: 10.1021/cr010379n
    [88]
    WANG H, SUN Y, YI J, et al.. Fluorescent porous carbon nanocapsules for two-photon imaging, NIR/pH dual-responsive drug carrier, and photothermal therapy[J]. Biomaterials, 2015, 53:117-126. doi: 10.1016/j.biomaterials.2015.02.087
    [89]
    PANDEY S, THAKUR M, MEWADA A, et al.. Carbon dots functionalized gold nanorod mediated delivery of doxorubicin:tri-functional nano-worms for drug delivery, photothermal therapy and bioimaging[J]. Journal of Materials Chemistry B, 2013, 1(38):4972-4982. doi: 10.1039/c3tb20761g
    [90]
    YANG S T, WANG X, WANG H, et al.. Carbon dots as nontoxic and high-performance fluorescence imaging agents[J]. The Journal of Physical Chemistry C, Nanomaterials and Interfaces, 2009, 113(42):18110-18114. doi: 10.1021/jp9085969
    [91]
    TAO H, YANG K, MA Z, et al.. In vivo NIR fluorescence imaging, biodistribution, and toxicology of photoluminescent carbon dots produced from carbon nanotubes and graphite[J]. Small, 2012, 8(2):281-290. doi: 10.1002/smll.201101706
    [92]
    WANG K, GAO Z, GAO G., et al.. Systematic safety evaluation on photoluminescent carbon dots[J]. Nanoscale Research Letters, 2013, 8(1):122. doi: 10.1186/1556-276X-8-122
    [93]
    ZHENG X, SHAO D, LI J, et al.. Single and repeated dose toxicity of citric acid-based carbon dots and a derivative in mice[J]. RSC Advances, 2015, 5(111):91398-91406. doi: 10.1039/C5RA18391J
    [94]
    DAS B, DADHICH P, PAL P, et al.. Carbon nanodots from date molasses:new nanolights for the in vitro scavenging of reactive oxygen species[J]. Journal of Materials Chemistry B, 2014, 2(39):6839-6847. doi: 10.1039/C4TB01020E
    [95]
    LI S, GUO Z, ZHANG Y, et al.. Blood compatibility evaluations of fluorescent carbon dots[J]. ACS Applied Materials & Interfaces, 2015, 7(34):19153-19162. http://cn.bing.com/academic/profile?id=a5aeabc32185ce76b46c783b47d4821b&encoded=0&v=paper_preview&mkt=zh-cn
    [96]
    HUANG X, ZHANG F, ZHU L, et al.. Effect of injection routes on the biodistribution, clearance, and tumor uptake of carbon dots[J]. ACS Nano, 2013, 7(7):5684-5693. doi: 10.1021/nn401911k
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article views(9425) PDF downloads(563) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return