Volume 11 Issue 3
Jun.  2018
Turn off MathJax
Article Contents
LIU Zhi-he, WU Chang-feng. Advances in application of materials of super-resolution imaging fluorescent probe[J]. Chinese Optics, 2018, 11(3): 344-362. doi: 10.3788/CO.20181103.0344
Citation: LIU Zhi-he, WU Chang-feng. Advances in application of materials of super-resolution imaging fluorescent probe[J]. Chinese Optics, 2018, 11(3): 344-362. doi: 10.3788/CO.20181103.0344

Advances in application of materials of super-resolution imaging fluorescent probe

doi: 10.3788/CO.20181103.0344
Funds:

the National Natural Science Foundation of China Grant No.61335001

the National Natural Science Foundation of China Grant No.81771930

Shenzhen Science and Technology Innovation Commission Grant No.JCYJ20170307110157501

More Information
  • Corresponding author: WU Chang-feng, E-mail:wucf@sustc.edu.cn
  • Received Date: 23 Jan 2018
  • Rev Recd Date: 13 Mar 2018
  • Publish Date: 01 Jun 2018
  • In order to further understand the biological cellular processes in the complex environments, a variety of bioimaging techniques have been developed by researchers. Biofluorescence imaging has been extensively developed due to its simple imaging conditions and compatibility with biological samples. However, the traditional fluorescence imaging technology is restricted by the optical diffraction limit, so it is impossible to resolve the spatial structure below 200 nm, which hinders the study of the biological processes of subcellular structures. Super-resolution fluorescence microscopy breaks through the limitations of imaging resolution with traditional optical diffraction and can acquire nanoscale cellular dynamics. In addition to improvements and upgrades to traditional wide-field fluorescence microscope frames, typical super-resolution imaging microscopy techniques currently also rely on the photophysical properties of fluorescent probe materials. Commonly used fluorescent probe materials mainly include fluorescent proteins, organic fluorescent molecules and fluorescent nanomaterials. This paper introduces several mainstream super-resolution fluorescence microscopy techniques and summarizes the application status of fluorescent probe materials that have been successfully applied to super-resolution biofluorescence imaging.

     

  • loading
  • [1]
    FERRARI M. Cancer nanotechnology:opportunities and challenges[J]. Nature Reviews:Cancer, 2005, 5(3):161-171. doi: 10.1038/nrc1566
    [2]
    NIE S, XING Y, KIM G J, et al.. Nanotechnology applications in cancer[J]. Annual Review of Biomedical Engineering, 2007, 9:257-288. doi: 10.1146/annurev.bioeng.9.060906.152025
    [3]
    BEN N G GIEPMANS, STEPHEN R ADAMS, MARK H ELLISMAN, et al.. The fluorescent toolbox for assessing protein location and function[J]. Science, 2006, 312(217):224. http://cn.bing.com/academic/profile?id=cc996e1880426cdd60a036f11b646509&encoded=0&v=paper_preview&mkt=zh-cn
    [4]
    LI G W, XIE X S. Central dogma at the single-molecule level in living cells[J]. Nature, 2011, 475(7356):308-315. doi: 10.1038/nature10315
    [5]
    XIE X. S, YU J, YANG W Y. Living cells as test tubes[J]. Science, 2006, 312:228-230. doi: 10.1126/science.1127566
    [6]
    ABBE E. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung[J]. Archiv Für Mikroskopische Anatomie, 1873, 9(1):413-418. doi: 10.1007/BF02956173
    [7]
    KLEIN T, PROPPERT S, SAUER M. Eight years of single-molecule localization microscopy[J]. Histochemistry and Cell Biology, 2014, 141(6):561-575. doi: 10.1007/s00418-014-1184-3
    [8]
    STEFAN W. H, WICHMANN J. Breaking the diffraction resolution limit by stimulated emission stimulatedemission depletion fluorescence microscopy[J]. Optics Letters, 1994, 19(11):780-782. doi: 10.1364/OL.19.000780
    [9]
    GAEL M, REBECCA M, BIRKA H, et al.. Fast STED microscopy with continuous wave fiber lasers[J]. Optics Express, 2010, 18(2):1302-1309. doi: 10.1364/OE.18.001302
    [10]
    SUSANNE S, THORSTEN S, RITTWEGER E, et al.. STED nanoscopy with mass-produced laser diodes[J]. Optics Express, 2011, 19(9):8066-8072. doi: 10.1364/OE.19.008066
    [11]
    ROUBINET B, MARIANO L. B, PHILIPP A, et al.. Carboxylated photoswitchable diarylethenes for biolabeling and super-resolution RESOLFT microscopy[J]. Angew Chem. Int. Ed. Engl., 2016, 55:15429-15433. doi: 10.1002/anie.v55.49
    [12]
    BOHM U, HELL S W, SCHMIDT R. 4Pi-RESOLFT nanoscopy[J]. Nat. Commun., 2016, 7:10504. doi: 10.1038/ncomms10504
    [13]
    HOFMANN M, EGGELING C, JAKOBS S, et al.. Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins[J]. Proc. Natl. Acad. Sci. USA, 2005, 102(49):17565-17569. doi: 10.1073/pnas.0506010102
    [14]
    BETZIG E, PATTERSON G H, SOUGRAT R, et al.. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 2006, 313(5793):1642-1645. doi: 10.1126/science.1127344
    [15]
    LEGANTW R, SHAO L, GRIMM J B, et al.. High-density three-dimensional localization microscopy across large volumes[J]. Nature Methods, 2016, 13:359-365. doi: 10.1038/nmeth.3797
    [16]
    EN CAI, KYLE MARCHUK, PETER BEEMILLER, et al.. Visualizing dynamic microvillar search and stabilization during ligand detection by T cells[J]. Science, 2017, 356:598. http://cn.bing.com/academic/profile?id=3a71d2c194dd6a935895951c68f2e752&encoded=0&v=paper_preview&mkt=zh-cn
    [17]
    RUST M J, BATES M, ZHUANG X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy(STORM)[J]. Nat Methods, 2006, 3(10):793-795. doi: 10.1038/nmeth929
    [18]
    VAN D L S, LOSCHBERGER A, KLEIN T, et al.. Direct stochastic optical reconstruction microscopy with standard fluorescent probes[J]. Nat. Protoc., 2011, 6(7):991-1009. doi: 10.1038/nprot.2011.336
    [19]
    DERTINGER T, COLYER R, IYER G, et al.. Fast, background-free, 3D super-resolution optical fluctuation imaging(SOFI)[J]. Proc. Natl. Acad. Sci. USA, 2009, 106(52):22287-22292. doi: 10.1073/pnas.0907866106
    [20]
    COX S, ROSTEN E, MONYPENNY J, et al.. Bayesian localization microscopy reveals nanoscale podosome dynamics[J]. Nat. Methods, 2011, 9(2):195-200. http://cn.bing.com/academic/profile?id=c07b5ae46a81588374ddd70390807f47&encoded=0&v=paper_preview&mkt=zh-cn
    [21]
    CHEN X Z, WEI M, ZHENG M M, et al.. Study of RNA polymerase Ⅱ clustering inside live-cell nuclei using bayesian nanoscopy[J]. ACS Nano, 2016, 10(2):2447-2454. doi: 10.1021/acsnano.5b07257
    [22]
    GUSTAFSSON M G L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[J]. Journal of Microscopy, 2000, 192:82-87. http://cn.bing.com/academic/profile?id=4a44fafc541473968a8d9f3d53236a52&encoded=0&v=paper_preview&mkt=zh-cn
    [23]
    GUSTAFSSON M G. Nonlinear structured-illumination microscopy:wide-field fluorescence imaging with theoretically unlimited resolution[J]. Proc. Natl. Acad. Sci. USA, 2005, 102(37):13081-13086. doi: 10.1073/pnas.0406877102
    [24]
    HELL T A K S W. Subdiffraction resolution in far-field fluorescence microscopy[J]. Optics Letters, 1999, 24(14):954-956. doi: 10.1364/OL.24.000954
    [25]
    HEIN B, WILLIG K I, HELL S W. Stimulated emission depletion(STED) nanoscopy of a fluorescent protein-labeled organelle inside a living cell[J]. Proc. Natl. Acad. Sci. USA, 2008, 105(38):14271-14276. doi: 10.1073/pnas.0807705105
    [26]
    ALEXEY N BUTKEVICH, GYUZEL YU MITRONOVA, SVEN C SIDENSTEIN, et al.. Fluorescent rhodamines and fluorogenic carbopyronines for super-resolution STED microscopy in living cells[J]. Angew Chem. Int. Ed. Engl., 2016, 55:3290-3294. doi: 10.1002/anie.201511018
    [27]
    BORDENAVE M D, BALZAROTTI F, STEFANI F D, et al.. STED nanoscopy with wavelengths at the emission maximum[J]. Journal of Physics D:Applied Physics, 2016, 49(36):365102. doi: 10.1088/0022-3727/49/36/365102
    [28]
    GOTTFERT F, PLEINER T, HEINE J, et al.. Strong signal increase in STED fluorescence microscopy by imaging regions of subdiffraction extent[J]. Proc. Natl. Acad. Sci. USA, 2017, 114(9):2125-2130. doi: 10.1073/pnas.1621495114
    [29]
    HELL S W, KROUG M. Ground-state-depletion fluorscence microscopy:a concept for breaking the diffraction resolution limit[J]. Applied Physics B, 1995, 60(5):495-497. doi: 10.1007/BF01081333
    [30]
    JOANNA O, ADOLFSSON K, WESTPHAL V, et al.. Ground state depletion nanoscopy resolves semiconductor nanowire barcode segments at room temperature[J]. Nano Letters, 2017, 17(4):2652-2659. doi: 10.1021/acs.nanolett.7b00468
    [31]
    WURM C A, KOLMAKOV K, GÖTTFERT F, et al.. Novel red fluorophores with superior performance in STED microscopy[J]. Optical Nanoscopy, 2012, 1(1):7. doi: 10.1186/2192-2853-1-7
    [32]
    SCHILL H, NIZAMOV S, BOTTANELLI F, et al.. 4-Trifluoromethyl-substituted coumarins with large Stokes shifts:synthesis, bioconjugates, and their use in super-resolution fluorescence microscopy[J]. Chemistry, 2013, 19(49):16556-16565. doi: 10.1002/chem.201302037
    [33]
    ERDMANN R S, TAKAKURA H, THOMPSON A D, et al.. Super-resolution imaging of the Golgi in live cells with a bioorthogonal ceramide probe[J]. Angew Chem. Int. Ed. Engl., 2014, 53(38):10242-10246. doi: 10.1002/anie.201403349
    [34]
    LUKINAVICIUS G, REYMOND L, D'ESTE E, et al.. Fluorogenic probes for live-cell imaging of the cytoskeleton[J]. Nat. Methods, 2014, 11(7):731-733. doi: 10.1038/nmeth.2972
    [35]
    D'ESTE E, KAMIN D, GOTTFERT F, et al.. STED nanoscopy reveals the ubiquity of subcortical cytoskeleton periodicity in living neurons[J]. Cell Rep., 2015, 10(8):1246-1251. doi: 10.1016/j.celrep.2015.02.007
    [36]
    KOLMAKOV K, HEBISCH E, WOLFRAM T, et al.. Far-red emitting fluorescent dyes for optical nanoscopy:fluorinated Silicon-Rhodamines(SiRF Dyes) and phosphorylated oxazines[J]. Chemistry, 2015, 21(38):13344-13356. doi: 10.1002/chem.201501394
    [37]
    KASPER R, HARKE B, FORTHMANN C, et al.. Single-molecule STED microscopy with photostable organic fluorophores[J]. Small, 2010, 6(13):1379-1384. doi: 10.1002/smll.v6:13
    [38]
    GRAZVYDAS L, REYMOND L, UMEZAWA K, et al.. Fluorogenic probes for multicolor imaging in living cells[J]. J. Am. Chem. Soc., 2016, 138:9365-9368. doi: 10.1021/jacs.6b04782
    [39]
    HANNE J, FALK H J, GORLITZ F, et al.. STED nanoscopy with fluorescent quantum dots[J]. Nat. Commun., 2015, 6:7127. doi: 10.1038/ncomms8127
    [40]
    AHMET YILDIZ, JOSEPH N FORKEY, SEAN A MCKINNEY, et al.. Myosin V walks hand-over-hand_single fluorophore imaging with 1.5-nm localization[J]. Science, 2003, 300(27):2061-2065. http://cn.bing.com/academic/profile?id=66c301b8c26d4db38977901e170978a0&encoded=0&v=paper_preview&mkt=zh-cn
    [41]
    ALISTAIR N. BOETTIGER, BOGDAN BINTU, JEFFREY R. MOFFITT, et al.. Super-resolution imaging reveals distinct chromatin folding for different epigenetic states[J]. Nature, 2016. http://cn.bing.com/academic/profile?id=e46d0bcf905784cbe271fb4dcded58cf&encoded=0&v=paper_preview&mkt=zh-cn
    [42]
    BELIVEAU B J, BOETTIGER A N, AVENDANO M S, et al.. Single-molecule super-resolution imaging of chromosomes and in situ haplotype visualization using Oligopaint FISH probes[J]. Nat. Commun., 2015, 6:7147. doi: 10.1038/ncomms8147
    [43]
    VISWANATHAN S, WILLIAMS M E, BLOSS E B, et al.. High-performance probes for light and electron microscopy[J]. Nat. Methods, 2015, 12(6):568-576. doi: 10.1038/nmeth.3365
    [44]
    ZHANG X, ZHANG M S, DONG L, et al.. Highly photostable, reversibly photoswitchable fluorescent protein with high contrast ratio for live-cell superresolution microscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016. http://cn.bing.com/academic/profile?id=5658cff492d84e0cac790d52988931b2&encoded=0&v=paper_preview&mkt=zh-cn
    [45]
    LEE H-L D, LORD S J, SHIGEKI I, et al.. Superresolution imaging of targeted proteins in fixed and living cells using photoactivatable organic fluorophores[J]. J. Am. Chem. Soc., 2010, 132:15099-15101. doi: 10.1021/ja1044192
    [46]
    LEE M K, WILLIAMS J, TWIEG R J, et al.. Enzymatic activation of nitro-aryl fluorogens in live bacterial cells for enzymatic turnover-activated localization microscopydagger[J]. Chemical Science, 2013, 42:220-225. http://cn.bing.com/academic/profile?id=a58f8be5b6a9afd90fc52e7c1d64f0d2&encoded=0&v=paper_preview&mkt=zh-cn
    [47]
    FOLLING J, BELOV V, KUNETSKY R, et al.. Photochromic rhodamines provide nanoscopy with optical sectioning[J]. Angew. Chem. Int. Ed. Engl., 2007, 46(33):6266-6270. doi: 10.1002/anie.v46:33
    [48]
    BOSSI M, FOLLING J, BELOV V N, et al.. Multicolor far-field fluorescence nanoscopy through isolated detection of distinct molecular species[J]. J. Am. Chem. Soc., 2008, 8(8):2463-2468. http://cn.bing.com/academic/profile?id=526d08a731da80e2265c9712936088d9&encoded=0&v=paper_preview&mkt=zh-cn
    [49]
    GRIMM J B, SUNG A J, LEGANT W R, et al.. Carbofluoresceins and carborhodamines as scaffolds for high-contrast fluorogenic probes[J]. ACS Chem. Biol., 2013, 8(6):1303-1310. doi: 10.1021/cb4000822
    [50]
    DENIZ E, TOMASULO M, CUSIDO J, et al.. Photoactivatable fluorophores for super-resolution imaging based on oxazine auxochromes[J]. The Journal of Physical Chemistry C, 2012, 116(10):6058-6068. doi: 10.1021/jp211796p
    [51]
    TIAN Z, LI A D, HU D. Super-resolution fluorescence nanoscopy applied to imaging core-shell photoswitching nanoparticles and their self-assemblies[J]. Chem. Commun.(Camb), 2011, 47(4):1258-1260. doi: 10.1039/C0CC03217D
    [52]
    ZHANG H, WANGC, JIANG T, et al.. Microtubule-targetable fluorescent probe:site-specific detection and super-resolution imaging of ultratrace tubulin in microtubules of living cancer cells[J]. Anal. Chem., 2015, 87(10):5216-5222. doi: 10.1021/acs.analchem.5b01089
    [53]
    LI C, HU Z, ALDRED M P, et al.. Water-soluble polymeric photoswitching dyads impart super-resolution lysosome highlighters[J]. Macromolecules, 2014, 47(24):8594-8601. doi: 10.1021/ma501505w
    [54]
    BATES M, HUANG B, DEMPSEY G T, et al.. Multicolor Super-Resolution Imaging with Photo-Switchable Fluorescent Probes[J]. Science, 2007, 317:1749-1753. doi: 10.1126/science.1146598
    [55]
    HUANG B, WANG W, BATES M, et al.. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy[J]. Science, 2008, 319:810-813. doi: 10.1126/science.1153529
    [56]
    HEILEMANN M, VAN D L S, SCHUTTPELZ M, et al.. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes[J]. Angew Chem. Int. Ed. Engl., 2008, 47(33):6172-6176. doi: 10.1002/anie.v47:33
    [57]
    GRAHAM T DEMPSEY, BATES M, WALTER E KOWTONIUK, et al.. Photoswitching mechanism of cyanine dyes[J]. J. Am. Chem. Soc., 2009, 131:18192-18193. doi: 10.1021/ja904588g
    [58]
    VAUGHAN J C, DEMPSEY G T, SUN E, et al.. Phosphine quenching of cyanine dyes as a versatile tool for fluorescence microscopy[J]. J. Am. Chem. Soc., 2013, 135(4):1197-2000. doi: 10.1021/ja3105279
    [59]
    FU N, XIONG Y, SQUIER T C. Synthesis of a targeted biarsenical Cy3-Cy5 affinity probe for super-resolution fluorescence imaging[J]. J. Am. Chem. Soc., 2012, 134(45):18530-18533. doi: 10.1021/ja308503x
    [60]
    GUNSOLUS I L, HU D, MIHAI C, et al.. Facile method to stain the bacterial cell surface for super-resolution fluorescence microscopy[J]. Analyst, 2014, 139(12):3174-3178. doi: 10.1039/C4AN00574K
    [61]
    CHIEN M P, CARLINI A S, HU D, et al.. Enzyme-directed assembly of nanoparticles in tumors monitored by in vivo whole animal imaging and ex vivo super-resolution fluorescence imaging[J]. J. Am. Chem. Soc., 2013, 135(50):18710-18713. doi: 10.1021/ja408182p
    [62]
    HEILEMANN M, VAN D L S, MUKHERJEE A, et al.. Super-resolution imaging with small organic fluorophores[J]. Angew Chem. Int. Ed. Engl., 2009, 48(37):6903-6908. doi: 10.1002/anie.v48:37
    [63]
    LUKINAVICIUS G, UMEZAWA K, OLIVIER N, et al.. A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins[J]. Nat. Chem., 2013, 5(2):132-139. doi: 10.1038/nchem.1546
    [64]
    UNO S N, KAMIYA M, YOSHIHARA T, et al.. A spontaneously blinking fluorophore based on intramolecular spirocyclization for live-cell super-resolution imaging[J]. Nat. Chem., 2014, 6(8):681-689. doi: 10.1038/nchem.2002
    [65]
    SCHAFER P, VAN D L S, LEHMANN J, et al.. Methylene blue-and thiol-based oxygen depletion for super-resolution imaging[J]. Anal. Chem., 2013, 85(6):3393-3400. doi: 10.1021/ac400035k
    [66]
    LEE S F, VEROLET Q, FURSTENBERG A. Improved super-resolution microscopy with oxazine fluorophores in heavy water[J]. Angew Chem. Int. Ed. Engl., 2013, 52(34):8948-8951. doi: 10.1002/anie.201302341
    [67]
    DERTINGER T, RYAN C, VOGEL R, et al.. Achieving increased resolution and more pixels with SOFI[J]. Optics Express, 2010, 18(18):18875-18885. doi: 10.1364/OE.18.018875
    [68]
    GEISSBUEHLER S, DELLAGIACOMA C, LASSER T. Comparison between SOFI and STORM[J]. Optics Express, 2011, 2(3):408-420. doi: 10.1364/BOE.2.000408
    [69]
    GEISSBUEHLER S, BOCCHIO N L, DELLAGIACOMA C, et al.. Mapping molecular statistics with balanced super-resolution optical fluctuation imaging(bSOFI)[J]. Optical Nanoscopy, 2012, 1:1-7. doi: 10.1186/2192-2853-1-1
    [70]
    GEISSBUEHLER S, SHARIPOV A, GODINAT A, et al.. Live-cell multiplane three-dimensional super-resolution optical fluctuation imaging[J]. Nat. Commun., 2014, 5:5830. doi: 10.1038/ncomms6830
    [71]
    WANG X H, CHEN D N, YU B, et al.. Deconvolution optimization in super-resolution optical fluctuation imaging based on cumulant standard deviation[J]. Acta Physica Sinica, 2016, 65:198701.
    [72]
    ZENG Z P, CHEN X Z, WANG H, et al.. Fast super-resolution imaging with ultra-high labeling density achieved by joint tagging super-resolution optical fluctuation imaging[J]. Sci. Rep., 2015, 5:8359. doi: 10.1038/srep08359
    [73]
    HABUCHI S, ANDO R, DEDECKER P, et al.. Reversible single-molecule photoswitching in the GFP-like fluorescent protein Dronpa[J]. Proc. Natl. Acad. Sci. USA, 2005, 102(27):9511-9516. doi: 10.1073/pnas.0500489102
    [74]
    DEDECKER P, MO G C, DERTINGER T, et al.. Widely accessible method for superresolution fluorescence imaging of living systems[J]. Proc. Natl. Acad. Sci. USA, 2012, 109(27):10909-10914. doi: 10.1073/pnas.1204917109
    [75]
    ZHANG M, CHANG H, ZHANG Y, et al.. Rational design of true monomeric and bright photoactivatable fluorescent proteins[J]. Nat. Methods, 2012, 9(7):727-729. doi: 10.1038/nmeth.2021
    [76]
    ZHANG X, CHEN X Z, ZENG Z P, et al.. Development of a reversibly switchable fluorescent protein for super-resolution optical fluctuation imaging(SOFI)[J]. ACS Nano, 2015, 9(3):2659-2667. doi: 10.1021/nn5064387
    [77]
    DERTINGER T, HEILEMANN M, VOGEL R, et al.. Superresolution optical fluctuation imaging with organic dyes[J]. Angew Chem. Int. Ed. Engl., 2010, 49(49):9441-9443. doi: 10.1002/anie.201004138
    [78]
    DAVID A. VANDEN B, WAI T Y, HU D H, et al.. Discrete intensity jumps and intramolecular electronic energy transfer in the spectroscopyof single conjugated polymer molecule[J]. Science, 1997, 277:1074-1077. doi: 10.1126/science.277.5329.1074
    [79]
    BARBARA P F, GESQUIERE A J, PARK S J, et al.. Single-molecule spectroscopy of conjugated polymers[J]. Acc. Chem. Res., 005, 38:602-610. doi: 10.1021/ar040141w
    [80]
    WU C F, CHIU D T. Highly fluorescent semiconducting polymer dots for biology and medicine[J]. Angew Chem. Int. Ed. Engl., 2013, 52(11):3086-3109. doi: 10.1002/anie.201205133
    [81]
    WU C F, SZYMANSKI C, CAIN Z, et al.. Conjugated polymer dots for multiphoton fluorescence imaging[J]. J. Am. Chem. Soc., 2007, 129:12904-12905. doi: 10.1021/ja074590d
    [82]
    WU C F, BARBARA B, SZYMANSKI C, et al.. Multicolor conjugated polymer dots for biological fluorescence imaging[J]. ACS Nano, 2008, 2(11):2415-2423. doi: 10.1021/nn800590n
    [83]
    CHEN X Z, LI R Q, LIU Z H, et al.. Small Photoblinking Semiconductor Polymer Dots for Fluorescence Nanoscopy[J]. Advanced Materials, 2017, 29(5). http://cn.bing.com/academic/profile?id=ee2f4456344a9b0f757c13a347e0a321&encoded=0&v=paper_preview&mkt=zh-cn
    [84]
    CHEN X Z, LIU Z H, LI R Q, et al.. Multicolor super-resolution fluorescence microscopy with blue and carmine small photoblinking polymer dots[J]. ACS Nano, 2017. http://cn.bing.com/academic/profile?id=ca7d3f868f8de12b0eda8aa67704e384&encoded=0&v=paper_preview&mkt=zh-cn
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)

    Article views(2985) PDF downloads(487) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return