Volume 11 Issue 2
Apr.  2018
Turn off MathJax
Article Contents
HE Xiao-ying, DONG Jian, HU Shuai, HE Yan, LV Ben-shun, LUAN Xin-xin, LI Chong, 胡 安琪, HU Zong-hai, GUO Xia. High-speed 850 nm vertical-cavity surface-emitting lasers with BCB planarization technique[J]. Chinese Optics, 2018, 11(2): 190-197. doi: 10.3788/CO.20181102.0190
Citation: HE Xiao-ying, DONG Jian, HU Shuai, HE Yan, LV Ben-shun, LUAN Xin-xin, LI Chong, 胡 安琪, HU Zong-hai, GUO Xia. High-speed 850 nm vertical-cavity surface-emitting lasers with BCB planarization technique[J]. Chinese Optics, 2018, 11(2): 190-197. doi: 10.3788/CO.20181102.0190

High-speed 850 nm vertical-cavity surface-emitting lasers with BCB planarization technique

doi: 10.3788/CO.20181102.0190
Funds:

National Natural Science Foundation of China 61335004

National Natural Science Foundation of China 61675046

National Natural Science Foundation of China 61505003

National Key R&D Program of China 2016YFB0400603

National Key R&D Program of China 2017YFB0400902

National Key R&D Program of China 2017YFF0104801

More Information
  • Corresponding author: GUO Xia, E-mail: guox@bupt.edu.cn
  • Received Date: 17 Nov 2017
  • Rev Recd Date: 16 Dec 2017
  • Publish Date: 01 Apr 2018
  • Vertical-cavity surface-emitting lasers(VCSELs) are widely used in short-reached optical interconnects and data communication links because of their low energy consumption and high modulation speed. Capacitance, as the parasitic parameters, affects the modulation bandwidth. In this paper, parasitic capacitance of VCSELs is reduced by using a low-k benzocyclobutene(BCB) planarization technique. The detail BCB planarization technique has been discussed with optimal process parameters, which is useful for high-speed VCSEL fabrication. The small signal modulation bandwidth of the low-k BCB planarization VCSEL with 7 μm oxide aperture has been achieved to 15.2 GHz.

     

  • loading
  • [1]
    海一娜, 邹永刚, 田锟, 等.水平腔面发射半导体激光器研究进展[J].中国光学, 2017, 10(2):194-206. http://www.chineseoptics.net.cn/CN/abstract/abstract9460.shtml

    HAI Y N, ZOU Y G, TIAN K, et al. Research progress of horizontal cavity surface emitting semiconductor lasers[J]. Chinese Optics, 2017, 10(2):194-206. http://www.chineseoptics.net.cn/CN/abstract/abstract9460.shtml
    [2]
    黄海华, 刘云, 杨晔, 等.850 nm锥形半导体激光器的温度特性[J].中国光学, 2013, 6(2):201-207. http://www.chineseoptics.net.cn/CN/abstract/abstract8898.shtml

    HAI H H, LIU Y, YANG Y, et al. Temperature characteristics of 850 nm tapered semiconductor lasers[J]. Chinese Optics, 2013, 6(2):201-207. http://www.chineseoptics.net.cn/CN/abstract/abstract8898.shtml
    [3]
    戚晓东, 叶淑娟, 张楠, 等.面发射分布反馈半导体激光器及光栅耦合半导体激光器[J].中国光学, 2010, 3(5):415-431. http://www.chineseoptics.net.cn/CN/abstract/abstract8520.shtml

    QI X D, YE SH J, ZHANG N, et al. Surface-emitting distributed-feedback semiconductor lasers and grating-coupled laser diodes[J]. Chinese Optics, 2010, 3(5):415-431. http://www.chineseoptics.net.cn/CN/abstract/abstract8520.shtml
    [4]
    WESTBERGH P, GUSTAVSSON J S, HAGLUND A, et al.. High-speed, low-current-density 850 nm VCSELs[J]. IEEE J. Sel. Topics Quantum Electron., 2009, 15(3):694-703. doi: 10.1109/JSTQE.2009.2015465
    [5]
    WESTBERGH P, GUSTAVSSON J S, KO? GEL B, et al.. Impact of photon lifetime on high-speed VCSEL performance[J]. IEEE J. Sel. Topics Quantum Electron., 2011, 17(6):1603-1613. doi: 10.1109/JSTQE.2011.2114642
    [6]
    LARISCH G, MOSER P, LOTT J A, et al.. Impact of photon lifetime on the temperature stability of 50 Gb/s 980 nm VCSELs[J]. IEEE Photon. Technol. Lett., 2016, 28(21):2327-2330. doi: 10.1109/LPT.2016.2592985
    [7]
    HAGLUND E, WESTBERGH P, GUSTAVSSON J S, et al.. High-speed VCSELs with strong confinement of optical fields and carriers[J]. J. Lightwave Technol., 2016, 34(2):269-277. doi: 10.1109/JLT.2015.2458935
    [8]
    MOSER P, LOTT J A, BIMBERG D. Energy efficiency of directly modulated oxide-confined high bit rate 850-nm VCSELs for optical interconnects[J]. IEEE J. Sel. Topics Quantum Electron., 2013, 19(4):1702212-1702212. doi: 10.1109/JSTQE.2013.2255266
    [9]
    WESTBERGH P, SAFAISINI R, HAGLUND E, et al.. High-speed oxide confined 850-nm VCSELs operating error-free at 40 Gb/s up to 85℃[J]. IEEE Photon. Technol. Lett., 2013, 25(8):768-771. doi: 10.1109/LPT.2013.2250946
    [10]
    LUCOVSKY G, RAYNER JR G B. Microscopic model for enhanced dielectric constants in low concentration SiO2 -rich noncrystalline Zr and Hf silicate alloys[J]. Appl. Phys. Lett., 2000, 77(18):2912-2914. doi: 10.1063/1.1320860
    [11]
    OU Y, GUSTAVSSON J S, WESTBERGH P, et al.. Impedance characteristics and parasitic speed limitations of high-speed 850-nm VCSELs[J]. IEEE Photon. Technol. Lett., 2009, 21(24):1840-1842. doi: 10.1109/LPT.2009.2034618
    [12]
    CHANG Y C, COLDREN L A. Efficient, high-data-rate, tapered oxide-aperture vertical-cavity surface-emitting lasers[J]. IEEE J. Sel. Topics Quantum Electron., 2009, 15(3):704-715. doi: 10.1109/JSTQE.2008.2010955
    [13]
    LI H, LOTT J A, WOLF P, et al.. Temperature-dependent impedance characteristics of temperature-stable high-speed 980-nm VCSELs[J]. IEEE Photon. Technol. Lett., 2015, 27(8):832-835. doi: 10.1109/LPT.2015.2393863
    [14]
    COLDREN L A, CORZINE S W, MASHANOVITCH M L. Diode Lasers and Photonic Integrated Circuits[M]. New Jersey, MD:John Wiley & Sons, 2012.
    [15]
    LI H, WOLF P, MOSER P, et al.. Impact of the quantum well gain-to-cavity etalon wavelength offset on the high temperature performance of high bit rate 980-nm VCSELs[J]. IEEE J. Quantum Electron., 2014, 50(8):613-621. doi: 10.1109/JQE.2014.2330255
    [16]
    MOSER P, LOTT J A, LARISCH G, et al.. Impact of the oxide-aperture diameter on the energy efficiency, bandwidth, and temperature stability of 980-nm VCSELs[J]. J. Lightwave Technol., 2015, 33(4):825-831. doi: 10.1109/JLT.2014.2365237
    [17]
    LARSSON A, WESTBERGH P, GUSTAVSSON J, et al.. High-speed VCSELs for short reach communication[J]. Semicond. Sci. Technol., 2010, 26(1):014017. http://www.researchgate.net/publication/230988183_High-speed_VCSELs_for_short_reach_communication?ev=prf_cit
    [18]
    HAGLUND E P, KUMARI S, WESTBERGH P, et al.. 20-Gb/s modulation of silicon-integrated short-wavelength hybrid-cavity VCSELs[J]. IEEE Photon. Technol. Lett., 2016, 28(8):856-859. doi: 10.1109/LPT.2016.2514699
    [19]
    HAGLUND E P, WESTBERGH P, GUSTAVSSON J S, et al.. Impact of damping on high-speed large signal VCSEL dynamics[J]. J. Lightwave Technol, 2015, 33(4):795-801. doi: 10.1109/JLT.2014.2364455
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article views(2646) PDF downloads(411) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return