Volume 10 Issue 2
Apr.  2017
Turn off MathJax
Article Contents
CAO Shang-wen, ZHOU Yong-jiang, CHENG Hai-feng. Research progress of transformation optics lens antenna[J]. Chinese Optics, 2017, 10(2): 164-175. doi: 10.3788/CO.20172002.0164
Citation: CAO Shang-wen, ZHOU Yong-jiang, CHENG Hai-feng. Research progress of transformation optics lens antenna[J]. Chinese Optics, 2017, 10(2): 164-175. doi: 10.3788/CO.20172002.0164

Research progress of transformation optics lens antenna

doi: 10.3788/CO.20172002.0164
  • Received Date: 21 Oct 2016
  • Rev Recd Date: 25 Nov 2016
  • Publish Date: 01 Apr 2017
  • Luneburg lens antenna is a kind of gradient index lens antenna, but its application is restricted due to certain disadvantages. In recent years, various new-type lens antennas, the most representative of which was planar Luneburg lens, were designed by means of transformation optics and metamaterial theories. In this paper, three transformation optics techniques of lens design including coordinate transformation, conformal mapping and quasi-conformal mapping are summarized and compared. Quasi-conformal mapping has better research and application prospect because of its flexibility in lens design and easy fabrication by all dielectric materials. Principles and procedures of quasi-conformal mapping in lens design are elaborated, and important research fruits about lens transformation and fabrication are introduced. Finally, the research directions of transformation optics lens antenna in the future are proposed.

     

  • loading
  • [1]
    肖雨琴, 张英波, 李凤山.龙伯透镜天线的研制[J].舰船科学技术, 1992, 3:33-38. http://www.cnki.com.cn/Article/CJFDTOTAL-JCKX199203006.htm

    XIAO Y Q, ZHANG Y B, LI F SH. Research on Luneburg lens antenna[J]. Ship Science and Technology, 1992, 3:33-38.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-JCKX199203006.htm
    [2]
    刘璟. 多波束龙伯透镜天线技术研究[D]. 成都: 电子科技大学, 2010.

    LIU J. Study on multi-beam Luneburg lens antenna techniques[D]. Chengdu:University of Electronic Science and Technology of China, 2010.(in Chinese)
    [3]
    钟鸣海. 分层龙伯透镜天线技术研究[D]. 成都: 电子科技大学, 2009.

    ZHONG M H. Study on layered Luneburg lens antenna techniques[D]. Chengdu:University of Electronic Science and Technology of China, 2009.(in Chinese)
    [4]
    JIANG W X, JESSIE Y C, CUI T J. Anisotropic metamaterialdevices[J]. Materials Today, 2009, 12(12):26-33. doi: 10.1016/S1369-7021(09)70314-1
    [5]
    SCHUIG D, MOCK JJ, JUSTICE B J, et al.. Metamaterialelectromagnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801):977-980. doi: 10.1126/science.1133628
    [6]
    MA H F, CUI T J. Three-dimensional broadband ground-plane cloak made of metamaterials[J]. Nature Communication, 2010, 1(3):605-629. https://www.researchgate.net/publication/293880529_Supplementary_Figures/fulltext/56bcc98a08aed6959945b698/293880529_Supplementary_Figures.pdf?origin=publication_detail
    [7]
    WERNER D H, KWON D H. Transformation Electromagnetics and Metamaterials[M]. London:Springer, 2014.
    [8]
    CHEN H Y, CHAN C T, SHENG P. Transformation optics and metamaterials[J]. Nature Material, 2010, 9(5):387-96. doi: 10.1038/nmat2743
    [9]
    CHEN H Y, HOU B, CHEN S Y, et al.. Design and experimental realization of a broadband transformation media field rotator[J]. Physical Review Letters, 2009, 102(18):183903. doi: 10.1103/PhysRevLett.102.183903
    [10]
    SHU W X, YANG S S, YAN W Y, et al.. Flat designs of impedance-matchednon magnetic phase transformer and wave-shaping polarization splittervia transformation optics[J]. Optics Communications, 2014, 338:307-312.
    [11]
    CHEN C, LIU S B, WANG S Y. A shifted waveguide connector combinedwitha photonic crystal filter designed by transformationoptics[J]. Optics & Laser Technology, 2013, 49(49):161-165.
    [12]
    PENDRY J B, SCHUIG D, SMITH D R. Controlling electromagnetic fields[J]. Science, 2006, 312:1780-1782. doi: 10.1126/science.1125907
    [13]
    LEONHARDT U. Optical conformal mapping[J]. Science, 2006, 312:1777-1780. doi: 10.1126/science.1126493
    [14]
    蒋卫祥. 变换光学及其应用[D]. 南京: 东南大学, 2010.

    JIANG W X. Transformation optics and its applications[D]. Nanjing:Southeast University, 2010.(in Chinese)
    [15]
    张永亮, 董贤子, 段宣明, 等.变换光学的物理原理和前沿进展[J].量子电子学报, 2014, 31(4):385-393. http://www.cnki.com.cn/Article/CJFDTOTAL-LDXU201404001.htm

    ZHANG Y L, DONG X Z, DUAN X M, et al..Fundamental and frontiers of transformation optics[J]. Chinese J. Quantum Electronics, 2014, 31(4):385-393.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-LDXU201404001.htm
    [16]
    陈曦. 超材料的电磁特性与应用研究[D]. 长沙: 国防科学技术大学, 2013.

    CHEN X. Research on the electromagnetic characters and applications of metamaterial[D]. Changsha:National University of Defense Technology, 2013.(in Chinese)
    [17]
    张检发, 袁晓东, 秦石乔.可调太赫兹与光学超材料[J].中国光学, 2014, 7(3):349-364. http://www.chineseoptics.net.cn/CN/abstract/abstract9144.shtml

    ZHANG J F, YUAN X D, QIN SH Q. Tunable terahertz and optical metamaterials[J]. Chinese Optics, 2014, 7(3):349-364.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9144.shtml
    [18]
    贾秀丽, 王晓鸥, 周忠祥, 等.手性负折射率材料的最新进展[J].中国光学, 2015, 8(4):548-556. doi: 10.3788/co.

    JIA X L, WANG X O, ZHOU ZH X, et al.. Latest progress on chiral negative refractive index metamaterials[J]. Chinese Optics, 2015, 8(4):548-556.(in Chinese) doi: 10.3788/co.
    [19]
    张会, 张卫宇, 徐旺, 等.THz波段光子晶体带隙影响因素研究[J].发光学报, 2012, 33(8):883-887. doi: 10.3788/fgxb

    ZHANG H, ZHANG W Y, XU W, et al.. Study on the influencing factors of photonic crystal's band gaps in THz waveband[J]. Chinese J. Luminescene, 2012, 33(8):883-887.(in Chinese) doi: 10.3788/fgxb
    [20]
    庞永强. 电磁吸波超材料理论与设计研究[D]. 长沙: 国防科学技术大学, 2013.

    PANG Y Q. The theory and design of metamaterialabsorbers[D]. Changsha:National University of Defense Technology, 2013.(in Chinese)
    [21]
    MA H F, CHEN X, YANG X M, et al..A broadband metamaterial cylindrical lens antenna[J]. Chinese Science Bulletin, 2010, 55(19):2066-2070. doi: 10.1007/s11434-010-3021-y
    [22]
    ABDALLAH D, SHAH N B, ANDRE D L, et al..Compact metamaterial-based substrate-integrated Luneburg lens antenna[J]. Antennas and Wireless Propagation Letters, 2012, 11(4):1504-1507.
    [23]
    XUE L, FUSCO V F. 24 GHz automotive radar planar Luneburg lens[J]. Microw.Antennas.Propag, 2007, 1(3):624-628. doi: 10.1049/iet-map:20050203
    [24]
    刘志佳. 基于开孔结构的龙伯透镜天线技术[D]. 成都: 电子科技大学, 2011.

    LIU ZH J. Techniques of Luneburg lens antenna based on drilled holes structure[D]. Chengdu:University of Electronic Science and Technology of China, 2011.(in Chinese)
    [25]
    MIN L, NG W R, CHANG K H, et al.. An X-band luneburg lens antenna fabricated by rapid prototyping[J]. IEEE MTT-S International Microwave Symposium, 2011:1-4. https://www.researchgate.net/publication/224251369_An_X-band_Luneburg_Lens_antenna_fabricated_by_rapid_prototyping_technology
    [26]
    田小永, 殷鸣, 李涤尘.渐变折射率人工电磁介质设计与3D打印制造[J].机械工程学报, 2015(7):124-129. http://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201507018.htm

    TIAN X Y, YIN M, LI D C. Design and fabrication of gradient index artificial electromagnetic medium based on 3D printing[J]. J. Mechanical Engineering, 2015(7):124-129.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201507018.htm
    [27]
    KONG F M, WU B L, KONG J A, et al..Planar focusing antenna design by using coordinate transformation technology[J]. Applied Physics Letters, 2007, 91(25):253509-3. doi: 10.1063/1.2826283
    [28]
    KWON D H, WERNER D H. Transformation optical designs for wave collimators, flat lenses and right-angle bends[J]. New J. Physics, 2008, 10(11):1005-1008. https://www.researchgate.net/publication/231148815_Transformation_optical_designs_for_wave_collimators_flat_lenses_and_right-angle_bends
    [29]
    JIANG W X, CUI T J, MA H F, et al.. Cylindrical to planewave conversion via embedded optical transformation[J]. Applied Physics Letters, 2008, 92(26):261903-3. doi: 10.1063/1.2953447
    [30]
    JIANG W X, CUI T J, MA H F, et al.. Layered high-gain lens antennas via discrete optical transformation[J]. Applied Physics Letters, 2008, 93(22):221906-3. doi: 10.1063/1.3040307
    [31]
    HUANG L J, WANG Z Q, ZHOU S T, et al.. A novel design for high gain lens antennas with homogeneous media[J]. Photonics and Nanostructures-Fundamentals and Applications, 2012, 10(4):615-623.
    [32]
    YAO K, JIANG X Y, CHEN H Y. Collimating lenses from non-euclidean transformationoptics[J]. New J. Physics, 2012, 14(2):23011-23019. doi: 10.1088/1367-2630/14/2/023011
    [33]
    ZHANG J J, LUO Y, XI S, et al.. Directive emission obtained by coordinate transformation[J]. Progress in Electromagnetics Research, 2008, 81(81):437-446. http://www.academia.edu/11022893/DIRECTIVE_EMISSION_OBTAINED_BY_COORDINATE_TRANSFORMATION
    [34]
    LUO Y, ZHANG J J, CHEN H S, et al..High-directivity antenna with small antenna aperture[J]. Applied Physics Letters, 2009, 95(19):193506-3. doi: 10.1063/1.3264085
    [35]
    TICHIT P H, BUROKUR, LUSTRAC A D. Ultradirective antenna via transformation optics[J]. J. Applied Physics, 2009, 105(10):104912-6. doi: 10.1063/1.3131843
    [36]
    TURPIN J P, MASSOUD A T, JIANG Z H, et al..Conformal mappings to achieve simple material parameters for transformation optics devices[J]. Optics Express, 2010, 18(18):244-252. https://www.researchgate.net/publication/41510547_Conformal_mappings_to_achieve_simple_material_parameters_for_transformation_optics_devices
    [37]
    YAO K, JIANG X Y. Designing feasible optical devices via conformal mapping[J]. J. Optical Society of America B, 2011, 28(5):1037-1043. doi: 10.1364/JOSAB.28.001037
    [38]
    刘佳. 超材料在光学传输方面的应用研究[D]. 南京: 南京航空航天大学, 2014.

    LIU J. Application of metamaterial in optical transmission[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2014.(in Chinese)
    [39]
    LI J, PENDRY J B. Hiding under the carpet:a new strategy for cloaking[J]. Physical Review Letters, 2008, 101(20):2952-2965. https://www.researchgate.net/publication/23710551_Hiding_under_the_Carpet_A_New_Strategy_for_Cloaking
    [40]
    SMITH D R, URZHUMOV Y, KUNDTZ N B, et al.. Enhancing imaging systems using transformation optics[J]. Optics Express, 2010, 18(20):21238-21251. doi: 10.1364/OE.18.021238
    [41]
    MEI Z L, BAI J, NIU T M. A planar focusing antenna designed using quasi-conformal mapping[J]. Progress in Electromagnetics Research M, 2010, 13(2):261-273. http://www.jpier.org/PIERM/pierm13/20.10053102.pdf
    [42]
    WU Q, TUIPIN J, TANG W X, et al.. Flat collimating lenses based on quasi-conformal transformation electromagnetics[C]. European Conference on Antennas and Propagation.IEEE, 2012:1696-1700.
    [43]
    KWON D H. Quasi-Conformal transformation optics lenses for conformal arrays[J]. IEEE Antennas & Wireless Propagation Letters, 2012, 11(12):1125-1128.
    [44]
    AGHANEJAD I, ABIRI H, YAHAGHI A. Design of high-gain lens antenna by gradient-index metamaterialsusing transformation optics[J]. IEEE Transactions on Antennas & Propagation, 2012, 60(9):4074-4081. https://www.researchgate.net/publication/258655412_Design_of_High-Gain_Lens_Antenna_by_Gradient-Index_Metamaterials_Using_Transformation_Optics
    [45]
    WU Q, JIANG Z H, TERUEL O Q, et al.. Transformation optics inspired multibeamlens antennas for broadband directive radiation[J]. IEEE Transactions on Antenna & Propagation, 2013, 61(12):5910-5922. https://www.researchgate.net/publication/260660639_Transformation_Optics_Inspired_Multibeam_Lens_Antennas_for_Broadband_Directive_Radiation
    [46]
    CHANG Z, ZHOU X M, HU J, et al.. Design method for quasi-isotropic transformation materials based on inverse Laplace's equation with sliding boundaries[J]. Optics Express, 2010, 18(6):6089-6096. doi: 10.1364/OE.18.006089
    [47]
    TANG W X, ARGYROPOULOS C, KALLOS E, et al.. Discrete coordinate transformation for designing all-dielectric flat antennas[J]. IEEE Transactions on Antennas & Propagation, 2011, 58(12):3795-3804.
    [48]
    SEGURA C M, DYKE A, DYKE H, et al.. Flat Luneburg lens via transformation optics for directive antenna applications[J]. IEEE Transactions on Antennas & Propagation, 2014, 62(4):1945-1953. https://www.researchgate.net/publication/263036424_Flat_Luneburg_Lens_via_Transformation_Optics_for_Directive_Antenna_Applications
    [49]
    KUNDTZ N, SMITH D R. Extreme-angle broadband metamateriallens[J]. Nature Materials, 2010, 9(9):129-132. https://www.researchgate.net/publication/40731121_Extreme-angle_broadband_metamaterial_lens
    [50]
    MA H F, CUI T J. Three-dimensional broadband and broad-angle transformation-optics lens[J]. Nature Communication, 2010, 1(8):173-184.
    [51]
    DRISCOLL T, LIPWORTH G, HUNT J, et al..Performance of a three dimensional transformation-optical-flattened Luneburg lens[J]. Optics Express, 2012, 20(12):13262-13273. doi: 10.1364/OE.20.013262
    [52]
    YANG R, TANG W X, HAO Y. A broadband zone plate lens from transformation optics[J]. Optics Express, 2011, 19(19):12348-12355.
    [53]
    LI S L, ZHANG Z, WANG J H, et al.. Design of conformal lens by drilling holes materials using quasiconformal transformation optics[J]. Optics Express, 2014, 22(21):25455-25465. doi: 10.1364/OE.22.025455
    [54]
    李守亮. 变换电磁学在天线设计中的应用研究[D]. 北京: 北京交通大学, 2015.

    LI SH L. Research of transformation electromagnetic theory applied to antenna design[D]. Beijing:Beijing Jiaotong University, 2015.(in Chinese)
    [55]
    WU L L, TIAN X Y, MA H F, et al.. Broadband flattened Luneburg lens with ultra-wide angle based on a liquid medium[J]. Applied Physics Letters, 2013, 102(7):074103-4. doi: 10.1063/1.4793206
    [56]
    WU L L, TIAN X Y, YIN M, et al.. Three-dimensional liquid flattened Luneburg lens with ultra-wide viewing angle and frequency band[J]. Applied Physics Letters, 2013, 103(8):084102-4. doi: 10.1063/1.4819338
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article views(3158) PDF downloads(1181) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return