Volume 10 Issue 5
Oct.  2017
Turn off MathJax
Article Contents
LI An, WANG Liang-wei, GUO Shuai, LIU Rui-bin. Advances in signal enhancement mechanism and technology of laser induced breakdown spectroscopy[J]. Chinese Optics, 2017, 10(5): 619-640. doi: 10.3788/CO.20171005.0619
Citation: LI An, WANG Liang-wei, GUO Shuai, LIU Rui-bin. Advances in signal enhancement mechanism and technology of laser induced breakdown spectroscopy[J]. Chinese Optics, 2017, 10(5): 619-640. doi: 10.3788/CO.20171005.0619

Advances in signal enhancement mechanism and technology of laser induced breakdown spectroscopy

doi: 10.3788/CO.20171005.0619
Funds:

by National Natural Science Foundation of China 61574017

More Information
  • Corresponding author: LIU Rui-bin, E-mail:liuruibin8@gmail.com
  • Received Date: 11 May 2017
  • Rev Recd Date: 13 Aug 2017
  • Publish Date: 01 Oct 2017
  • Laser induced breakdown spectroscopy(LIBS) is a new material identification and quantitative analysis technique, and the low repeatability of the emission spectrum is a key factor in influencing and hindering technology transition from qualitative analysis to quantitative analysis. Therefore, improving the single-to-noise ratio(SNR) and the space stability of plasma are a positive way to improve the spectral repeatability and reduce matrix effect and other unfavorable factors. In addition, SNR enhancement can reduce the requirement of laser output energy, thus effectively reducing the cost of the system based on LIBS, and furthermore facilitating the expansion of LIBS technology to more areas. In this paper, double-pulse and multiple-pulse enhancement, discharge pulse re-excitation, spatial confinement, magnetic field confinement and microwave assisted enhancement are summarized and concluded. Accordingly, the physical mechanism of the spectral enhancement is deeply discussed, which provides strong theoretical basis for further improving of the spectral repeatability and the accuracy of quantitative analysis.

     

  • loading
  • [1]
    侯冠宇, 王平, 佟存柱.激光诱导击穿光谱技术及应用研究进展[J].中国光学, 2013, 6(4):490-500. http://www.chineseoptics.net.cn/CN/abstract/abstract9001.shtml

    HOU G Y, WANG P, TONG C ZH. Progress in laser-induced breakdown spectroscopy and its applications[J]. Chinese Optics, 2013, 6(4):490-500.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9001.shtml
    [2]
    王琦, 董凤忠, 梁云仙.再加热双脉冲与单脉冲激光诱导Fe等离子体发射光谱实验对比研究[J].光学学报, 2011, 31(10):1-7. http://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201110051.htm

    WANG Q, DONG F ZH, LIANG Y X. Experiment comparison investigation on emission spectra of reheating double and single pulses laser-induced Fe plasma[J]. Acta Optica Sinica, 2011, 31(10):1-7.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201110051.htm
    [3]
    YU Y, ZHOU W D, SU X J. Detection of Cu in solution with double pulse laser-induced breakdown spectroscopy[J]. Optics Communications, 2014, 333(333):62-66.
    [4]
    FECHET P, MAUCHIEN P, WANGNER J F. Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy[J]. Analytica Chimica Acta, 2001, 429(2):269-278. doi: 10.1016/S0003-2670(00)01277-0
    [5]
    胡振华, 张巧, 丁蕾.液体中Cu元素双脉冲激光诱导击穿光谱测量研究[J].量子电子学报, 2014, 31(1):99-106. http://youxian.cnki.com.cn/yxdetail.aspx?filename=ZGGA201710009&dbname=CJFDPREP

    HU ZH H, ZHANG Q, DING L. Anaylysis of Cu in liquid jet using double pulse laser induced breakdown spectroscopy[J]. Chinese J. Quantum Electronics, 2014, 31(1):99-106.(in Chinese) http://youxian.cnki.com.cn/yxdetail.aspx?filename=ZGGA201710009&dbname=CJFDPREP
    [6]
    伏再喜, 张先燚, 李庆.Ni原子双飞秒脉冲激光诱导击穿光谱的信号增强研究[J].原子与分子物理学报, 2011, 28(6):1061-1066. http://www.cnki.com.cn/Article/CJFDTOTAL-YZYF201106016.htm

    FU Z X, ZHANG X Y, LI Q. Investigation on the signal enhancement of the double fetosecond pulse laser-induced breakdown spectroscopy of nickel[J]. J. Atomic and Molecular Physics, 2011, 28(6):1061-1066, (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-YZYF201106016.htm
    [7]
    王猛猛. 双脉冲飞秒激光诱导击穿光谱的研究[D]. 北京: 北京理工大学, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10007-1016710571.htm

    WANG M M. Double pulse femtosecond laser induced breakdown spectroscopy[D]. Beijing:Beijing Insititute of Technology, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10007-1016710571.htm
    [8]
    SCHIFFERN J T, DOERR D W, ALEXANDER D R. Optimization of collinear double-pulse femtosecond laser-induced breakdown spectroscopy of silicon[J]. Spectrochimica Acta Part B Atomic Spectroscopy, 2007, 62(12):1412-1418. doi: 10.1016/j.sab.2007.10.042
    [9]
    PINON V, FOTAKIS C, NICOLAS G. Double pulse laser-induced breakdown spectroscopy with femtosecond laser pulses[J]. Spectrochimica Acta Part B Atomic Spectroscopy, 2008, 63(10):1006-1010. doi: 10.1016/j.sab.2008.09.004
    [10]
    AHMED R, BAIG M A. A comparative study of enhanced emission in double pulse laser induced breakdown spectroscopy[J]. Optics & Laser Technology, 2015, 65:113-118.
    [11]
    PINON V, ANGLOS D. Optical emission studies of plasma induced by single and double femtosecond laser pulses[J]. Spectrochimica Acta Part B Atomic Spectroscopy, 2009, 64(10):950-960. doi: 10.1016/j.sab.2009.07.036
    [12]
    CHICHKOV B N, MOMMA C, ALVENSLEBEN F V. Femtosecond, picosecond and nanosecond laser ablation of solids[J]. Applied Physics A, 1996, 63(2):109-115. doi: 10.1007/BF01567637
    [13]
    GAMALY E G, RODE A V, TIKHONCHUK V T. Electrostatic mechanism of ablation by femtosecond lasers[J]. Applied Surface Science, 2002, 9(1):699-704. http://www.academia.edu/12184598/Electrostatic_mechanism_of_ablation_by_femtosecond_lasers
    [14]
    NASSEF O A, ELSAYED H E. Spark discharge assisted laser induced breakdown spectroscopy[J]. Spectrochimica Acta Part B Atomic Spectroscopy, 2005, 60(12):1564-1572. doi: 10.1016/j.sab.2005.10.010
    [15]
    ZHOU W D, LI K X, SHEN Q. Optical emission enhancement using laser ablation combined with fast pulse discharge[J]. Optics Express, 2010, 18(3):2573-2578. doi: 10.1364/OE.18.002573
    [16]
    LI X, ZHOU W D, LI K X. Laser ablation fast pulse discharge plasma spectroscopy analysis of Pb, Mg and Sn in soil[J]. Optics Communications, 2012, 285(1):54-58. doi: 10.1016/j.optcom.2011.08.074
    [17]
    ZHOU W D, QIAN H, REN Z. Effect of voltage and capacitance in nanosecond pulse discharge enhanced laser-induced breakdown spectroscopy[J]. Applied Optics, 2012, 51(7):42-48. doi: 10.1364/AO.51.000B42
    [18]
    ZHOU W D, SU X J, QIAN H. Discharge character and optical emission in a laser ablation nanosecond discharge enhanced silicon plasma[J]. J. Analytical Atomic Spectrometry, 2013, 28(5):702-710. doi: 10.1039/c3ja30355a
    [19]
    VINIC M, IVKOVIC M. Spatial and temporal characteristics of laser ablation combined with fast pulse discharge[J]. IEEE Transactions on Plasma Science, 2014, 42(10):2598-2599. doi: 10.1109/TPS.2014.2330372
    [20]
    SOBBRAL H, ROBLEDO M A. Signal enhancement in laser-induced breakdown spectroscopy using fast square-pulse discharges[J]. Spectrochimica Acta Part B Atomic Spectroscopy, 2016, 124:67-73. doi: 10.1016/j.sab.2016.08.017
    [21]
    HOU Z, WANG Z, LIU J. Combination of cylindrical confinement and spark discharge for signal improvement using laser induced breakdown spectroscopy[J]. Optics Express, 2014, 22(11):12909-14. doi: 10.1364/OE.22.012909
    [22]
    陈金忠, 马瑞玲, 陈振玉.碳室约束对激光等离子体辐射的增强效应[J].光学精密工程, 2013, 21(8):1942-1948. http://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201308005.htm

    CHEN J ZH, MA R L, CHEN ZH Y. Enhancement effect of carbon chamber confinement on laser plasma radiation[J]. Opt. Precision Eng., 2013, 21(8):1942-1948.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201308005.htm
    [23]
    POPOV A M, COLAO F, FANTONNI R. Enhancement of LIBS signal by spatially confining the laser-induced plasma[J]. J. Analytical Atomic Spectrometr, 2009, 24(5):602-604. doi: 10.1039/b818849a
    [24]
    GUO L B, HAO Z Q, SHEN M. Accuracy improvement of quantitative analysis by spatial confinement in Laser induced breakdown spectroscopy[J]. Optics Express, 2013, 21(15).
    [25]
    MENT D S, ZHAO N J, MA M J. Heavy metal detection in soils by LIBS using hemispherical spatial confinement[J]. Plasma Science and Technology, 2015, 17(8):632-637. doi: 10.1088/1009-0630/17/8/04
    [26]
    SU X, ZHOU W D, QIAN H. Optical emission character of collinear dual pulse laser plasma with cylindrical cavity confinement[J]. J. Analytical Atomic Spectrometry, 2014, 29(12):2356-2361. doi: 10.1039/C4JA00296B
    [27]
    SU X J, ZHOU W D, QIAN H. Optimization of cavity size for spatial confined laser-induced breakdown spectroscopy[J]. Optics Express, 2014, 22(23):28437-28442. doi: 10.1364/OE.22.028437
    [28]
    SINGH S C, FALLON C, HAYDEN P. Ion flux enhancements and oscillations in spatially confined laser produced aluminum plasmas[J]. Physics Plasmas, 2014, 21(9):897-902. http://www.academia.edu/23089748/Ion_flux_enhancements_and_oscillations_in_spatially_confined_laser_produced_aluminum_plasmas
    [29]
    WANG Y, CHEN A, LI S. Two sequential enhancements of laser-induced Cu plasma with cylindrical cavity confinement[J]. J. Analytical Atomic Spectrometry, 2016, 31:1974-1977. doi: 10.1039/C6JA00260A
    [30]
    LI C, GUO L B, HE X. Element dependence of enhancement in optics emission from laser-induced plasma under spatial confinement[J]. J. Analytical Atomic Spectrometry, 2014, 29(4):638-643. doi: 10.1039/c3ja50368b
    [31]
    WANG Z, HOU Z, LIU S L. Utilization of moderate cylindrical confinement for precision improvement of laser-induced breakdown spectroscopy signal[J]. Optics Express, 2012, 20(23):1011-1018. http://adsabs.harvard.edu/abs/2012OExpr..20A1011W
    [32]
    LI X, WANG Z, MAO X. Spatially and temporally resolved spectral emission of laser-induced plasmas confined by cylindrical cavities[J]. J. Analytical Atomic Spectrometry, 2014, 2(3):213-218.
    [33]
    YIN H, HOU Z, WANG Z. Application of spatial confinement for gas analysis using laser-induced breakdown spectroscopy to improve signal stability[J]. J. Analytical Atomic Spectrometry, 2015, 30(4):922-928. doi: 10.1039/C4JA00437J
    [34]
    FU Y, HOU Z, WANG Z. Physical insights of cavity confinement enhancing effect in laser-induced breakdown spectroscopy[J]. Optics Express, 2016, 24(3):3055-3066. doi: 10.1364/OE.24.003055
    [35]
    LI X, YIN H, WANG Z.Quantitative carbon analysis in coal by combining data processing and spatial confinement in laser-induced breakdown spectroscopy[J]. Spectrochimica Acta Part B Atomic Spectroscopy, 2015, 111(4):102-107.
    [36]
    SHEN X K, LING H, LU Y F. Laser-induced breakdown spectroscopy with high detection sensitivity[J]. SPIE, 2009, 7202:7202D-1-11. https://nebraska.pure.elsevier.com/en/publications/laser-induced-breakdown-spectroscopy-with-high-detection-sensitiv
    [37]
    SHEN X K, SUN J, LING H. Spatial confinement effects in laser-induced breakdown spectroscopy[J]. Applied Physics Letters, 2007, 91(8):081501-081501-3. doi: 10.1063/1.2770772
    [38]
    HUANG F, LIANG P, YANG X.Confinement effects of shock waves on laser-induced plasma from a graphite target[J]. Physics Plasmas, 2015, 22(6):063509-1-7. doi: 10.1063/1.4922850
    [39]
    LI C, WANG J, WANG X. Shock wave confinement-induced plume temperature increase in laser-induced breakdown spectroscopy[J]. Physics Letters A, 2014, 378(45):3319-3325. doi: 10.1016/j.physleta.2014.06.049
    [40]
    GACEK S, WANG X. Dynamics evolution of shock waves in laser material interaction[J]. Applied Physics A, 2008, 94(3):675-690. doi: 10.1007%2Fs00339-008-4958-4.pdf
    [41]
    LI C, ZHANG J, WANG X. Phase change and stress wave in picosecond laser material interaction with shock wave formation[J]. Applied Physics A, 2013, 112(3):677-687. doi: 10.1007/s00339-013-7770-8
    [42]
    MARPAUNG A M, KURNIAWAN H, TJIA M O. Comprehensive study on the pressure dependence of shock wave plasma generation under TEA CO2 laser bombardment on metal sample[J]. J. Physics D Applied Physics, 2001, 34(34):758-771. doi: 10.1007/s00231-010-0742-z
    [43]
    MARPAUNG A M, HEDWIG R, PARDEDE M. Shock wave plasma induced by TEA CO2 laser bombardment on glass samples at high pressures[J]. Spectrochimica Acta Part B Atomic Spectroscopy, 2000, 55(55):1591-1599. http://unsyiah.academia.edu/NasrullahIdris
    [44]
    BOBIN J L, DURAND Y A, LANGER P P. Shock-wave generation in rarefied gases by laser impact on beryllium targets[J]. J. Applied Physics, 1968, 39(9):4184-4189. doi: 10.1063/1.1656945
    [45]
    NEOGI A, THAREJA R K. Dynamics of laser produced carbon plasma expanding in a nonuniform magnetic field[J]. J. Applied Physics, 1999, 85(2):1131-1136. doi: 10.1063/1.369238
    [46]
    BEHERA N, SINGH R K, KUMAR A. Dynamics and structural behaviour of laser induced plasma in transverse magnetic field[C]. DAE-BRNS National Laser Symposium(NLS-23), S.V. University, Tirupati, India, 3-6 Dec 2014, 2014.
    [47]
    BEHERA N, SINGH R K, KUMAR A. Confinement and re-expansion of laser induced plasma in transverse magnetic field:Dynamical behaviour and geometrical aspect of expanding plume[J]. Physics Letters A, 2015, 379(37):2215-2220. doi: 10.1016/j.physleta.2015.04.042
    [48]
    RAI V N, SINGH P J, YUEH F Y. Dynamics, stability and emission of radiation from laser produced plasma expanding across an external magnetic field[J]. Casopís Lékarů Ceských, 2001, 113(1):281-2822.
    [49]
    RAI V N, VIRENDRA N, SINGH P. Study of optical emission from laser-produced plasma expanding across an external magnetic field[J]. Laser & Particle Beams, 2003, 21(1):65-71.
    [50]
    RAI V N, RAI A K, YUEH F Y. Optical emission from laser-induced breakdown plasma of solid and liquid samples in the presence of a magnetic field[J]. Applied Optics, 2003, 42(12):2085-2093. doi: 10.1364/AO.42.002085
    [51]
    MASON K J, GOLDBERG J M. Characterization of a laser plasma in a pulsed magnetic field. part Ⅰ:spatially resolved emission studies[J]. Applied Spectroscopy, 1991, 45(3):370-379. doi: 10.1366/0003702914337362
    [52]
    RAI V N, SHUKLA M, PANT H C. An X-ray biplanar photodiode and the X-ray emission from magnetically confined laser produced plasma[J]. Pramana, 1999, 52(1):49-65. doi: 10.1007/BF02827601
    [53]
    SHEN X K, LU Y F, CEBRE T. Magnetically-confined laser-induced breakdown spectroscopy[C]. Cnference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, IEEE, 2006, DOI:10.1109/CLEO.2006.4628591.
    [54]
    SINGLETON J, MIELKE C H, MIGLIORI A. The national high magnetic field laboratory pulsed-field facility at los alamos national laboratory[J]. Physica B Condensed Matter, 2004, 346-347:614-617. doi: 10.1016/j.physb.2004.01.068
    [55]
    SHEN X K, LU X F, GEBRE T. Optical emission in magnetically confined laser-induced breakdown spectroscopy[J]. J. Applied Physics, 2006, 100(5):053303-053303-7. doi: 10.1063/1.2337169
    [56]
    HARILAL S S, TILLACK M S, OSHAY B. Confinement and dynamics of laser-produced plasma expanding across a transverse magnetic field[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2004, 69:02613-02613-11.
    [57]
    HAO Z, GUO L B, LI C. Sensitivity improvement in the detection of V and Mn elements in steel using laser-induced breakdown spectroscopy with ring-magnet confinement[J]. J. Analytical Atomic Spectrometry, 2014, 29(12):2309-2314. doi: 10.1039/C4JA00144C
    [58]
    ARSHAD A, BASHIR S, HAYAT A. Effect of magnetic field on laser-induced breakdown spectroscopy of graphite plasma[J]. Applied Physics B, 2016, 63(3):1-10. http://adsabs.harvard.edu/abs/2016ApPhB.122...63A
    [59]
    LKEDA Y, KANEKO M. Microwave-enhanced laser-induced breakdown spectroscopy[C]. Laser Techniques to Fluid Mechanics, Lisbon, Lisbon, Portuga, 2008:1-9.
    [60]
    LIU Y, MATTHICU B, MARTIN R. Elemental analysis by microwave-assisted laser-induced breakdown spectroscopy:Evaluation on ceramics[J]. J. Analytical Atomic Spectrometry, 2010, 25(8):1316-1323. doi: 10.1039/c003304a
    [61]
    LIU Y, BOUSQUET B, BAUDELET M. Improvement of the sensitivity for the measurement of copper concentrations in soil by microwave-assisted laser-induced breakdown spectroscopy[J]. Spectrochimica Acta Part B Atomic Spectroscopy, 2012, 73(73):89-92.
    [62]
    KHUMAENI A, MOTONOBU T, KATSUAKI A. Enhancement of LIBS emission using antenna-coupled microwave[J]. Optics Express, 2013, 21(24):29755-68. doi: 10.1364/OE.21.029755
    [63]
    TAMOP M, MIYABE M, AKAOKA K. Enhancement of intensity in microwave-assisted laser-induced breakdown spectroscopy for remote analysis of nuclear fuel recycling[J]. J. Analytical Atomic Spectrometry, 2014, 29(5):886-892. doi: 10.1039/C3JA50259G
    [64]
    WALL M, SUN A, ALWAHABI Z T. Quantitative detection of metallic traces in water-based liquids by microwave-assisted laser-induced breakdown spectroscopy[J]. Optics Express, 2016, 24(2):1507-1517. doi: 10.1364/OE.24.001507
    [65]
    VILJANEN J, SUN Z, ALWAHABI Z T. Microwave assisted laser-induced breakdown spectroscopy at ambient conditions[J]. Spectrochimica Acta Part B Atomic Spectroscopy, 2016, 118:29-36. doi: 10.1016/j.sab.2016.02.002
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(30)  / Tables(1)

    Article views(3221) PDF downloads(388) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return