Volume 10 Issue 5
Oct.  2017
Turn off MathJax
Article Contents
LIU Na, FAN Zhe-yi, REN Jie-ling, LIU Shuang, GONG Shi-bo, ZHOU Huan-ping, CHEN Qi. Preperation of perovskite materials and perovskite solar cells by vapor-assisted solution process[J]. Chinese Optics, 2017, 10(5): 568-577. doi: 10.3788/CO.20171005.0568
Citation: LIU Na, FAN Zhe-yi, REN Jie-ling, LIU Shuang, GONG Shi-bo, ZHOU Huan-ping, CHEN Qi. Preperation of perovskite materials and perovskite solar cells by vapor-assisted solution process[J]. Chinese Optics, 2017, 10(5): 568-577. doi: 10.3788/CO.20171005.0568

Preperation of perovskite materials and perovskite solar cells by vapor-assisted solution process

doi: 10.3788/CO.20171005.0568
Funds:

National Natural Science Foundatine of China 51673025

More Information
  • Corresponding author: CHEN Qi, E-mail:qic@bit.edu.cn
  • Received Date: 15 Apr 2017
  • Rev Recd Date: 13 May 2017
  • Publish Date: 01 Oct 2017
  • Hybrid perovskites (e.g., CH3NH3PbX3, X represents a halide) are attracting more and more attention from both industry and academic due to their widely applications in the field of photoelectric device, especially as light absorption material in solar cells. The process of industrialization of perovskite solar cells is in progress, and in the pursuit of low-cost and efficient perovskite PV technology, it is crucial to develop a facile and high reproducible technique for preparing perovskite films. Unlike other conventional solution treatments, the vapor-assisted solution process(VASP) treatment avoids the dissolution and solvation of the film during growth, inhibits the formation of crystal nucleus and allows rapid recombination of the film to obtain dense high-quality perovskite film. At present, the conversion efficiency of planar structure perovskite solar cells based on this film is reaching up to 16.8%. In this paper, the research progress of perovskite thin films and photovoltaic devices prepared by low temperature( < 150℃) VASP method is reviewed. This paper also prospects the industrialization of the technology. VASP has the advantages of simple preparation process, excellent performance and high reproducibility, which provides the possibility of further preparation of large-area and high-quality film.

     

  • loading
  • [1]
    章激扬, 李达, 杨苹, 等.光伏发电发展趋势分析[J].可再生能源, 2014, 32(2):127-132.

    ZHANG J Y, LI D, YANG P, et al.. Development trene analysis of photovoltaic power generation renewable energy resources, 2014, 32(2):127-132.(in Chinese)
    [2]
    LABORATORY N R E. Best Research-Cell Efficiencies; http://www.nrel.gov/ncpv/images/efficiency_chart.jpg.
    [3]
    GREEN M A, HO-BAILLIE A, SNAITH H J. The emergence of perovskite solar cells[J]. Nature Photonics, 2014, 8(7):506-514. doi: 10.1038/nphoton.2014.134
    [4]
    SNAITH H J. Perovskites:the emergence of a new era for low-cost, high-efficiency solar cells[J]. The J. Physical Chemistry Letters, 2013, 4(21):3623-3630. doi: 10.1021/jz4020162
    [5]
    PARK N-G. Perovskite solar cells:an emerging photovoltaic technology[J]. Materials Today, 2015, 18(2):65-72. doi: 10.1016/j.mattod.2014.07.007
    [6]
    苏彦勋, 柯沅锋, 蔡士良, 等.层层自组装金纳米粒子表面等离子体引发光电流应用于等离子体增感太阳能电池[J].中国光学, 2014, 7(2):267-273. http://www.chineseoptics.net.cn/CN/abstract/abstract9127.shtml

    SU Y H, KE Y F, CAI SH L, et al.. Layer self-assembly of gold nanoparticles surface plasmon triggered photoelectric current applied plasmon sensitized solar cell[J]. Chinese Optics, 2014, 7(2):267-273.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9127.shtml
    [7]
    蒋文程.环保型钙钛矿太阳能电池研制成功[J].中国光学, 2014, 7(4):682-683. http://www.cnki.com.cn/Article/CJFDTOTAL-NYYX201403023.htm
    [8]
    IM J H, LEE C R, LEE J W, et al.. 6.5% efficient perovskite quantum-dot-sensitized solar cell[J]. Nanoscale, 2011, 3(10):4088-4093. doi: 10.1039/c1nr10867k
    [9]
    KIM H S, LEE C R, IM J H, et al.. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J]. Scientific Reports, 2012, 2:591. doi: 10.1038/srep00591
    [10]
    WEHRENFENNIG C, EPERON G E, JOHNSTON M B, et al.. High charge carrier mobilities and lifetimes in organolead trihalide perovskites[J]. Advanced Materials, 2014, 26(10):1584-1589. doi: 10.1002/adma.201305172
    [11]
    XING G, MATHEWS N, SUN S, et al. Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3[J]. Science, 2013, 342(6156):344. doi: 10.1126/science.1243167
    [12]
    STRANKS S, EPERON G, GRANCINI G, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber[J]., 2013, 342(6156):341-344.
    [13]
    DUAN H S, ZHOU H, CHEN Q, et al.. The identification and characterization of defect states in hybrid organic-inorganic perovskite photovoltaics[J]. Physical Chemistry Chemical Physics, 2014, 17(1):112-116. http://www.ncbi.nlm.nih.gov/pubmed/25354141
    [14]
    JENG J-Y, CHIANG Y-F, LEE M-H, et al.. CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells[J]. Advanced Materials, 2013, 25(27):3727-3732. doi: 10.1002/adma.v25.27
    [15]
    LIU M, JOHNSTON M B, SNAITH H J. Efficient planar heterojunction perovskite solar cells by vapour deposition[J]. Nature, 2013, 501(7467):395-398. doi: 10.1038/nature12509
    [16]
    LIU D, KELLY T L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques[J]. Nature Photonics, 2013, 8(2):133-138. doi: 10.1038/nphoton.2013.342
    [17]
    MALINKIEWICZ O, YELLA A, LEE Y H, et al.. Perovskite solar cells employing organic charge-transport layers[J]. Nature Photonics, 2013, 8(2):128-132. doi: 10.1038/nphoton.2013.341
    [18]
    YIN W J, SHI T, YAN Y. Unique properties of halide perovskites as possible origins of the superior solar cell performance[J]. Adv. Mater., 2014, 26(27):4653-4658. doi: 10.1002/adma.v26.27
    [19]
    YIN W-J, SHI T, YAN Y. Superior photovoltaic propertiesof lead halide perovskites:insights from first-principles theory[J]. The J. Physical Chemistry C, 2015, 119(10):5253-5264. doi: 10.1021/jp512077m
    [20]
    朱劲松, 李伟, 宋春花, 等. 元素替代对层状钙钛矿Bi4Ti3O12铁电薄膜的铁电性影响[C]. 中国光学学会2004年学术大会, 杭州, 2004: 72-76.
    [21]
    BURSCHKA J, PELLET N, MOON S J, et al.. Sequential deposition as a route to high-performance perovskite-sensitized solar cells[J]. Nature, 2013, 499(7458):316-319. doi: 10.1038/nature12340
    [22]
    JEON N J, NOH J H, KIM Y C, et al.. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells[J]. Nat. Mater, 2014, 13(9):897-903. doi: 10.1038/nmat4014
    [23]
    LEE J W, SEOL D J, CHO A N, et al.. High-efficiency perovskite solar cells based on the black polymorph of HC(NH2)2 PbI3[J]. Adv. Mater., 2014, 26(29):4991-4998. doi: 10.1002/adma.201401137
    [24]
    WANG Q, SHAO Y, DONG Q, et al.. Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process[J]. Energy Environ. Sci., 2014, 7(7):2359-2365. doi: 10.1039/C4EE00233D
    [25]
    XIAO Z, BI C, SHAO Y, et al.. Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers[J]. Energy & Environmental Science, 2014, 7(8):2619. http://www.nrcresearchpress.com/servlet/linkout?suffix=refg8/ref8&dbid=16&doi=10.1139%2Fcjc-2015-0427&key=10.1039%2FC4EE01138D
    [26]
    XIAO M, HUANG F, HUANG W, et al.. A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells[J]. Angew Chem. Int. Ed. Eng., 2014, 53(37):9898-9903. doi: 10.1002/anie.201405334
    [27]
    YAN K, LONG M, ZHANG T, et al.. Hybrid halide perovskite solar cell precursors:colloidal chemistry and coordination engineering behind device processing for high efficiency[J]. J. Am. Chem. Soc., 2015, 137(13):4460-4468. doi: 10.1021/jacs.5b00321
    [28]
    ZHANG W, SALIBA M, MOORE D T, et al.. Ultrasmooth organic-inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells[J]. Nature Communications, 2015, 6:6142. doi: 10.1038/ncomms7142
    [29]
    LEYDEN M R, ONO L K, RAGA S R, et al.. High performance perovskite solar cells by hybrid chemical vapor deposition[J]. J. Mater. Chem. A, 2014, 2(44):18742-18745. doi: 10.1039/C4TA04385E
    [30]
    STRANKS S D, NAYAK P K, ZHANG W, et al. Formation of thin films of organic-inorganic perovskites for high-efficiency solar cells[J]. Angew Chem. Int. Ed. Eng., 2015, 54(11):3240-3248. doi: 10.1002/anie.201410214
    [31]
    SONG T B, CHEN Q, ZHOU H, et al.. Perovskite solar cells:film formation and properties[J]. J. Mater. Chem. A, 2015, 3(17):9032-9050. doi: 10.1039/C4TA05246C
    [32]
    CHEN Q, ZHOU H, HONG Z, et al.. Planar heterojunction perovskite solar cells via vapor-assisted solution process[J]. J. American Chemical Society, 2014, 136(2):622-625. http://www.ncbi.nlm.nih.gov/pubmed/24359486
    [33]
    LUO P, LIU Z, XIA W, et al.. Uniform, stable, and efficient planar-heterojunction perovskite solar cells by facile low-pressure chemical vapor deposition under fully open-air conditions[J]. ACS Appl. Mater. Interfaces, 2015, 7(4):2708-2714. doi: 10.1021/am5077588
    [34]
    DU T, WANG N, CHEN H, et al. Comparative study of vapor-and solution-crystallized perovskite for planar heterojunction solar cells[J]. ACS Appl. Mater. Interfaces, 2015, 7(5):3382-3388. doi: 10.1021/am508495r
    [35]
    ZHU W, YU T, LI F, et al.. A facile, solvent vapor-fumigation-induced, self-repair recrystallization of CH3NH3PbI3 films for high-performance perovskite solar cells[J]. Nanoscale, 2015, 7(12):5427-5434. doi: 10.1039/C5NR00225G
    [36]
    YOKOYAMA T, CAO D H, STOUMPOS C C, et al.. Overcoming short-circuit in lead-free CH3NH3SnI3 perovskite solar cells via kinetically controlled gas-solid reaction film fabrication process[J]. J. Phys. Chem. Lett., 2016, 7(5):776-782. doi: 10.1021/acs.jpclett.6b00118
    [37]
    HAO F, STOUMPOS CC, LIU Z, et al.. Controllable perovskite crystallization at a gas-solid interface for hole conductor-free solar cells with steady power conversion efficiency over 10%[J]. J. American Chemical Society, 2014, 136(46):16411-16419. doi: 10.1021/ja509245x
    [38]
    XU J, YIN J, XIAO L, et al.. Bromide regulated film formation of CH3NH3PbI3 in low-pressure vapor-assisted deposition for efficient planar-heterojunction perovskite solar cells[J]. Solar Energy Materials and Solar Cells, 2016, 157:1026-1037. doi: 10.1016/j.solmat.2016.08.027
    [39]
    CHEN J, XU J, XIAO L, et al.. Mixed-organic-cation (FA)x(MA)1-xPbI3 planar perovskite solar cells with 16.48% efficiency via a low-pressure vapor-assisted solution process[J]. ACS Applied Materials & Interfaces, 2017, 9(3):2449-2458. http://europepmc.org/abstract/MED/28054480
    [40]
    LI Y, COOPER J K, BUONSANTI R, et al. Fabrication of planar heterojunction perovskite solar cells by controlled low-pressure vapor annealing[J]. J. Phys. Chem. Lett., 2015, 6(3):493-499. doi: 10.1021/jz502720a
    [41]
    WANG B, CHEN T. Exceptionally stable CH3NH3PbI3 Films in moderate humid environmental condition[J]. Adv. Sci.(Weinh), 2016, 3(2):1500262. doi: 10.1002/advs.201500262
    [42]
    LEYDEN M R, LEE M V, RAGA S R, et al.. Large formamidinium lead trihalide perovskite solar cells using chemical vapor deposition with high reproducibility and tunable chlorine concentrations[J]. J. Mater. Chem. A, 2015, 3(31):16097-16103. doi: 10.1039/C5TA03577E
    [43]
    LUO P, LIU Z, XIA W, et al.. A simple in situ tubular chemical vapor deposition processing of large-scale efficient perovskite solar cells and the research on their novel roll-over phenomenon in J-V curves[J]. J. Mater. Chem. A, 2015, 3(23):12443-12451. doi: 10.1039/C5TA02306H
    [44]
    GOUDA L, GOTTESMAN R, TIROSH S, et al.. Vapor and healing treatment for CH3NH3PbI(3-x)Clx films toward large-area perovskite solar cells[J]. Nanoscale, 2016, 8(12):6386-6392. doi: 10.1039/C5NR08658B
    [45]
    谢世伟, 肖啸, 谭建军, 等.基于石墨烯基电极染料敏化太阳能电池的研究进展[J].中国光学, 2014, 7(1):47-56. http://www.chineseoptics.net.cn/CN/abstract/abstract9095.shtml

    XIE SH W, XIAO X, TAN J J, et al.. Recent progress in dye-sensitized solar cells using graphene-based electrodes[J]. Chinese Optics, 2014, 7(1):47-56. http://www.chineseoptics.net.cn/CN/abstract/abstract9095.shtml
    [46]
    ZHOU Z, XU J, XIAO L, et al. Efficient planar perovskite solar cells prepared via a low-pressure vapor-assisted solution process with fullerene/TiO2 as an electron collection bilayer[J]. RSC Adv., 2016, 6(82):78585-78594. doi: 10.1039/C6RA14372E
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article views(2389) PDF downloads(791) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return