Volume 10 Issue 1
Jan.  2017
Turn off MathJax
Article Contents
ZHANG Lei, LIU Shuo, CUI Tie-jun. Theory and application of coding metamaterials[J]. Chinese Optics, 2017, 10(1): 1-12. doi: 10.3788/CO.20171001.0001
Citation: ZHANG Lei, LIU Shuo, CUI Tie-jun. Theory and application of coding metamaterials[J]. Chinese Optics, 2017, 10(1): 1-12. doi: 10.3788/CO.20171001.0001

Theory and application of coding metamaterials

doi: 10.3788/CO.20171001.0001
Funds:

National Natural Science Foundation of China 61571117

More Information
  • Corresponding author: CUI Tie-jun, E-mail:tjcui@seu.edu.cn
  • Received Date: 14 Sep 2016
  • Rev Recd Date: 27 Sep 2016
  • Publish Date: 01 Feb 2017
  • In this paper, we review the recent progress on coding metamaterial, digital metamaterial and programmable metamaterial, and discuss their capacities in manipulating the electromagnetic (EM) waves in real time and constructing the multi-functional devices. First, we present 1-bit coding metamaterials that are composed of only two types of unit cells with 0 and π phase responses, named as '0' and '1' elements, respectively. By encoding '0' and '1' elements with controlled sequences, we can manipulate EM waves and realize different functionalities. The concept of coding metamaterials can be extended from 1-bit coding to 2-bit coding or higher. Second, we introduce a unique metamaterial particle that has either 0' or 1' response electrically controlled by a biased diode. Based on this particle, we present digital metamaterials with unit cells that possess either 0' or 1' state. Using a field-programmable gate array (FPGA), we realize the digital controls over the coding metamaterial, thereby realizing a programmable metamaterial. Finally, we study the manipulations to terahertz waves using the coding metamaterial, such as to produce wideband diffusions of terahertz waves, achieving the efficient reductions of radar cross sections (RCSs), as well as to propose anisotropic coding metamaterials, realizing distinct coding behaviors for different polarizations. The measured results are in good agreements with the simulated results, demonstrating the powerful abilities of coding metamaterials to control EM waves. The property of coding metamaterials to manipulate EM waves can be used for designing beam splitter, realizing anomalous reflections and polarization conversions, and reducing RCSs of metallic objects in wide frequency bands.

     

  • loading
  • [1]
    CUI T J, SMITH D R, LIU R. Metamaterials:Theory, Design, and Applications[M]. New York:Springer Science & Business Media, 2009.
    [2]
    VESELAGO V G. The electrodynamics of substances with simultaneously negative values of ε and μ[J]. Soviet Physics Uspekhi, 1968, 10:509-514. doi: 10.1070/PU1968v010n04ABEH003699
    [3]
    SHELBY R A, SMITH D R, SCHULTZ S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292:77-79. doi: 10.1126/science.1058847
    [4]
    PENDRY J B. Negative refraction makes a perfect lens[J]. Physics Review Letter, 2000, 85:3966-3969. doi: 10.1103/PhysRevLett.85.3966
    [5]
    ENOCH S, TAYEB G, SABOUROUX P, et al.. A metamaterial for directive emission[J]. Physics Review Letter, 2002, 89:213902. doi: 10.1103/PhysRevLett.89.213902
    [6]
    SILVEIRINHA M, ENGHETA N. Tunneling of Electromagnetic energy through subwavelength channels and bends using-near-zero materials[J]. Physics Review Letter, 2006, 97:157403. doi: 10.1103/PhysRevLett.97.157403
    [7]
    LIU R, CHENG Q, HAND T, et al.. Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies[J]. Physics Review Letter, 2008, 100:023903. doi: 10.1103/PhysRevLett.100.023903
    [8]
    ZHANG B, LUO Y, LIU X, et al.. Macroscopic invisibility cloak for visible light[J]. Physics Review Letter, 2011; 106:033901. doi: 10.1103/PhysRevLett.106.033901
    [9]
    CHEN X, LUO Y, ZHANG J, et al.. Macroscopic invisibility cloaking of visible light[J]. Nature Communication, 2011, 2:176. doi: 10.1038/ncomms1176
    [10]
    CHENG Q, JIANG W X, CUI T J. Spatial power combination for omnidirectional radiation via anisotropic metamaterials[J]. Physics Review Letter, 2012, 108:213903. doi: 10.1103/PhysRevLett.108.213903
    [11]
    BLANCO A, CHOMSKI E, GRABTCHAK S, et al.. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres[J]. Nature, 2000, 405:437-440. doi: 10.1038/35013024
    [12]
    SAKODA K. Optical Properties of Photonic Crystals[M]. New York:Springer Science & Business Media, 2005.
    [13]
    PENDRY J B, SCHURIG D, SMITH D R. Controlling electromagnetic fields[J]. Science, 2006, 312:1780-1782. doi: 10.1126/science.1125907
    [14]
    LEONHARDT U. Optical conformal mapping[J]. Science, 2006, 312:1777-1780. doi: 10.1126/science.1126493
    [15]
    SCHURIG D, MOCK J J, JUSTICE B J, et al.. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 2006, 314:977-980. doi: 10.1126/science.1133628
    [16]
    LI J, PENDRY J B. Hiding under the carpet:a new strategy for cloaking[J]. Physics Review Letter, 2008, 101:203901. doi: 10.1103/PhysRevLett.101.203901
    [17]
    LIU R, JI C, MOCK J J, et al.. Broadband ground-plane cloak[J]. Science, 2009, 323:366-369. doi: 10.1126/science.1166949
    [18]
    ERGIN T, STENGER N, BRENNER P, et al.. Three-dimensional invisibility cloak at optical wavelengths[J]. Science, 2010, 328:337-339. doi: 10.1126/science.1186351
    [19]
    MA H F, CUI T J. Three-dimensional broadband ground-plane cloakmade of metamaterials[J]. Nature Communication, 2010, 1:21.
    [20]
    JIANG W X, CUI T J, CHENG Q, et al.. Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces[J]. Applied Physics Letter, 2008, 92:264101. doi: 10.1063/1.2951485
    [21]
    LAI Y, NG J, CHEN H, et al.. Illusion optics:the optical transformation of an object into another object[J]. Physics Review Letter, 2009, 102:253902. doi: 10.1103/PhysRevLett.102.253902
    [22]
    JIANG W X, CUI T J, YANG X M, et al.. Shrinking an arbitrary object as one desires using metamaterials[J]. Applied Physics Letter, 2011, 98:204101. doi: 10.1063/1.3590203
    [23]
    KUNDTZ N, SMITH D R. Extreme-angle broadband metamaterial lens[J]. Nature Materials, 2010, 9:129132.
    [24]
    MA H F, CUI T J. Three-dimensional broadband ground-plane cloakmade of metamaterials[J]. Nature Communication, 2010, 1:21.
    [25]
    SMITH D R, MOCK J J, STARR A F, et al.. Gradient index metamaterials[J]. Physics Review E, 2005, 71:036609. doi: 10.1103/PhysRevE.71.036609
    [26]
    HAO Y, MITTRA R. FDTD Modeling of Metamaterials:Theory and Applications[M]. Boston:Artech House, 2009.
    [27]
    CHEN X, M A HF, ZOU X Y, et al.. Three-dimensional broadband and highdirectivity lens antenna made of metamaterials[J]. J. Applied Physics, 2011, 110:044904. doi: 10.1063/1.3622596
    [28]
    LIER E, WERNER D H, SCARBOROUGH C P, et al.. An octave-bandwidth negligible-loss radiofrequency metamaterial[J]. Nature Materials, 2011, 10:216-222. doi: 10.1038/nmat2950
    [29]
    JIANG W X, QIU C W, HAN T C, et al.. Broadband all-dielectric magnifying lens for far-field high-resolution imaging[J]. Advanced Materials, 2013, 25:6963-6968. doi: 10.1002/adma.v25.48
    [30]
    YANG X M, ZHOU X Y, CHENG Q, et al.. Diffuse reflections by randomly gradient index metamaterials[J]. Optics Letter, 2010, 35:808-810. doi: 10.1364/OL.35.000808
    [31]
    SILVA A, MONTICONE F, CASTALDI G, et al.. Performing mathematical operations with metamaterials[J]. Science, 2014, 343:160-163. doi: 10.1126/science.1242818
    [32]
    YU N, GENEVET P, KATS M A, et al.. Light propagation with phasediscontinuities:generalized laws of reflection and refraction[J]. Science, 2011, 334:333-337. doi: 10.1126/science.1210713
    [33]
    NI X, EMANI N K, KILDISHEV A V, et al.. Broadband light bending with plasmonicnanoantennas[J]. Science, 2012, 335:427. doi: 10.1126/science.1214686
    [34]
    SUN S, HE Q, XIAO S, et al.. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nature Materials, 2012, 11:426-431. doi: 10.1038/nmat3292
    [35]
    YIN X, YE Z, RHO J, et al.. Photonic spin hall effect at metasurfaces[J]. Science, 2013, 339:1405-1407. doi: 10.1126/science.1231758
    [36]
    LIN J, MUELLER J P, WANG Q, et al.. Polarization-controlled tunable directional coupling of surface plasmonpolaritons[J]. Science, 2013, 340:331-334. doi: 10.1126/science.1233746
    [37]
    MIROSHNICHENKO A E, KIVSHAR Y S. Polarization traffic control for surface plasmons[J]. Science, 2013, 340:283-284. doi: 10.1126/science.1236154
    [38]
    GRADY N K, HEYES J E, CHOWDHURY D R, et al.. Terahertz metamaterials for linear polarization conversion and anomalous refraction[J]. Science, 2013, 340:1304-1307. doi: 10.1126/science.1235399
    [39]
    QU C, MA S J, HAO J M, et al.. Tailor the functionalities of metasurfaces based on a complete phase diagram[J]. Physical Review Letters, 2015, 115(23):235503. doi: 10.1103/PhysRevLett.115.235503
    [40]
    CUI T J, QI M Q, WAN X, et al.. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light:Science & Application, 2014, 3:e218.
    [41]
    ZHU B O, ZHAO J M, FENG Y J. Active impedance metasurface with full 360 reflection phase tuning[J]. Scientific Reports, 2013, 3:3059.
    [42]
    MIAO Z, WU Q, LI X, et al.. Widely tunable terahertz phase modulation with gate-controlled graphenemetasurfaces[J]. Physical Review X, 2015, 5(4):041027. doi: 10.1103/PhysRevX.5.041027
    [43]
    WAN X, QI M Q, CHEN T Y, et al.. Field-programmable beam reconfiguring based on digitally-controlled coding metasurface[J]. Scientific Reports, 2016, 6:20663. doi: 10.1038/srep20663
    [44]
    XU H X, SUN S, TANG S, et al.. Dynamical control on helicity of electromagnetic waves by tunable metasurfaces[J]. Scientific Reports, 2016, 6:27503. doi: 10.1038/srep27503
    [45]
    GIOVAMPAOLA C D, ENGHETA N. Digital metamaterials[J]. Nature Materials, 2014, 14:1115-1121.
    [46]
    GAO L H, CHENG Q, YANG J, et al.. Broadband diffusion of terahertz waves by multi-bit coding metasurfaces[J]. Light:Science & Application, 2015, 4:e324.
    [47]
    LIU S, CUI T J, XU Q, et al.. Anisotropic coding metamaterials and their powerful manipulation to differently polarized terahertz waves[J]. Light:Science & Application, 2015, 5:e16076.
    [48]
    PAQUAY M, IRIARTE JC, EDERRA I, et al.. Thin AMC structure for radar cross-section reduction[J]. IEEE Transactions on Antennas and Propagation, 2007, 55:3630-3638. doi: 10.1109/TAP.2007.910306
    [49]
    MAIT J N. Design of binary-phase and multiphase Fourier gratings for array generation[J]. J. Optical Society of America A, 1990, 7:1514-1528. doi: 10.1364/JOSAA.7.001514
    [50]
    WANG M R, SU H. Laser direct-write gray-level mask and one-step etching for diffractive microlens fabrication[J]. Applied Optics, 1998, 37:7568-7576. doi: 10.1364/AO.37.007568
    [51]
    COOMBER S D, CAMERON C D, HUGHES J R, et al.. Optically addressed spatial light modulators for replaying computer-generated holograms[J]. Proc SPIE, 2001, 4457:9-19. doi: 10.1117/12.447756
    [52]
    WATTS C M, SHREKENHAMER D, MONTOYA J, et al.. Terahertz compressive imaging with metamaterial spatial light modulators[J]. Nature Photonics, 2014, 8(8):605-609. doi: 10.1038/nphoton.2014.139
    [53]
    SHREKENHAMER D, MONTOYA J, KRISHNA S, et al.. Four-color metamaterial absorber THz spatial light modulator[J]. Advanced Optical Materials, 2013, 1(12):905-909. doi: 10.1002/adom.v1.12
    [54]
    SAVO S, SHREKENHAMER D, PADILLA W J. Liquid crystal metamaterial absorber spatial light modulator for THz applications[J]. Advanced Optical Materials, 2014, 2:275-279. doi: 10.1002/adom.v2.3
    [55]
    CHAN W L, CHEN H T, TAYLOR A J, et al.. A spatial light modulator for terahertz beams[J]. Applied Physics Letter, 2009, 94:213511. doi: 10.1063/1.3147221
    [56]
    KARL N, REICHEL K, CHEN H T, et al.. An electrically driven terahertz metamaterial diffractive modulator with more than 20 dB of dynamic range[J]. Applied Physics Letter, 2014, 104:091115. doi: 10.1063/1.4867276
    [57]
    MAXFIELD C. The Design Warrior's Guide to FPGAs:Devices, Tools and Flows[M]. Oxford:Elsevier, 2004.
    [58]
    LANDY N I, SAJUYIGBE S, MOCK J J, et al.. Perfect metamaterial absorber[J]. Physics Review Letter, 2008, 100:207402. doi: 10.1103/PhysRevLett.100.207402
    [59]
    CHEN H T, ZHOU J, O'HARA J F, et al.. Antireflection coating using metamaterials and identification of its mechanism[J]. Physics Review Letter, 2010, 105:073901. doi: 10.1103/PhysRevLett.105.073901
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)

    Article views(3175) PDF downloads(1494) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return