Volume 8 Issue 2
Apr.  2015
Turn off MathJax
Article Contents
MAO Xiao-jie. New progress in high-power picosecond ultraviolet laser[J]. Chinese Optics, 2015, 8(2): 182-190. doi: 10.3788/CO.20150802.0182
Citation: MAO Xiao-jie. New progress in high-power picosecond ultraviolet laser[J]. Chinese Optics, 2015, 8(2): 182-190. doi: 10.3788/CO.20150802.0182

New progress in high-power picosecond ultraviolet laser

doi: 10.3788/CO.20150802.0182
  • Received Date: 11 Dec 2014
  • Accepted Date: 15 Dec 2014
  • Publish Date: 25 Apr 2015
  • High-power picosecond ultraviolet lasers have attracted considerable interests as novel laser source, due to their wide applications in high precision product, laser medical system, optoelectronic countermeasure and structuring of silicon. The research and development on high-power picosecond ultraviolet laser based on technology of sum frequency are classified and summarized. First, the mechanism of sum frequency and picosecond ultraviolet crystal are discussed. Then the high-power picosecond ultraviolet laser, the high-peak-power picosecond ultraviolet laser, and the high-power and high-peak-power picosecond ultraviolet lasers are discussed. Finally, the prospect of further development and applications of high-power picosecond ultraviolet laser sources is put forward. According to the latest development, it is indicated that the high power picosecond ultraviolet lasers developed in abroad is in maturity stage but just in starting stage at. The high-power picosecond ultraviolet lasers based on photonic crystal fiber laser and thin disk laser have some merits, which play important roles in laser industry.

     

  • loading
  • [1]
    [1] 王志俊,李阳平,周潇逸,等.紫外压印长波红外亚波长结构的涂胶工艺研究[J].光学精密工程,2014,22(8):2180-2187. WANG ZH J,LI Y P,ZHOU X Y,et al.. Spin coating of UV-curable resist for imprinting long-wave infrared subwavelength structures[J]. Opt. Precision Eng.,2014,22(8):2180-2187.(in Chinese)
    [2]
    [2] 王珣,金春水,匡尚奇,等.极紫外光学器件辐照污染检测技术[J].中国光学,2014,7(1):79-88. WANG X,JIN CH SH,KUANG SH Q,et al.. Techniques of radiation contamination monitoring for extreme ultraviolet devices[J]. Chinese Optics,2014,7(1):79-88.(in Chinese)
    [3]
    [3] 于国权,郭劲,李岩,等.激光角度欺骗干扰内场仿真系统精度分析[J].光学精密工程,2013,21(10):2610-2616. YU G Q,GUO J,LI Y,et al.. Precision analysis of indoor simulation system for laser angle deception jam[J]. Opt. Precision Eng.,2013,21(10):2160-2616.(in Chinese)
    [4]
    [4] 马宁,李晓毅,陆鸢,等.紫外光通信调制方式的对比研究[J].光学与光电技术,2014,12(3):79-84. MA N,LI X Y,LU Y,et al.. Research on modulation contrast of ultraviolet communication[J]. Optics & Optoelectronic Technology,2014,12(3):79-84.(in Chinese)
    [5]
    [5] 沈雷军,李波,王忠志,等.YVO4: Tm3+的真空紫外发光性能[J].发光学报,2014,35(9):1034-1039. SHEN L J,LI B,WANG ZH ZH,et al.. Vacuum ultraviolet spectra of YVO4: Tm3+[J]. Chinese J. Luminescence,2014,35(9):1034-1039.(in Chinese)
    [6]
    [6] 蔡钧安,秦志新.纳米压印制备的光子晶体结构对AlGaN基材料深紫外出光效率的提高[J].发光学报,2014,35(8):998-1003. CAI J A,QIN ZH X. Enhancement of deep-UV light extraction efficiency from bulk AlGaN with photonic crystals fabricated by nanoimprint lithography[J]. Chinese J. Luminescence,2014,35(8):998-1003.(in Chinese)
    [7]
    [7] DMITRIEV V G,GGURZADYAN G,NIKOGOSYAN D N. Handbook of Nonlinear Optical Cryatals[M]. New York:Springer,1999.
    [8]
    [8] MAKER P D,TERHUNE R W,NISENOFF M,et al.. Effects of dispersion and focusing on the production of optical harmonics[J]. Physics Review Letters,1962,8(1):21-22.
    [9]
    [9] 李港,郝海林.晶体长度对倍频效率的影响[J].北京工业大学学报,1992,18(1):73-76. LI G,HAO H L. The influence of crystal length for the efficiency of second harmonic[J]. J. Beijing Polytechnic University,1992,18(1):73-76.(in Chinese)
    [10]
    [10] 陈创天,叶宁,林峧,等.运用晶体非线性光学效应的阴离子基团理论探索新型紫外非线性光学材料[J].自然科学进展,2000,10(8):673-683. CHEN CH T,YE L,LIN X,et al.. Using the nonlinear optical crystal effect of the anionic group theory to explore new uv nonlinear optical materials[J]. Progress in Natural Science,2000,10(8):673-683.(in Chinese)
    [11]
    [11] CHEN CH T,WU Y C,JIANG A,et al.. New nonlinear optical crystal:LiB3O5[J]. J. the Optics Society of America B,1989,6(4):616-621.
    [12]
    [12] SANGLA D,SABY J,COCQUELIN B,et al.. High power picosecond fiber laser emitting 50 W at 343 nm at 80 MHz[J]. SPIE,2012,8237:82370N.
    [13]
    [13] PIERROT S,SABY J,COCQUELIN B,et al.. High-power all fiber picosecond sources from IR to UV[J]. SPIE,2011,7914:79140Q.
    [14]
    [14] SABY J,COCQUELIN B,MEUNIER A,et al.. High average and peak power pulsed fiber lasers at 1030 nm, 515 nm, and 343 nm[J]. SPIE,2010,7580:75800I.
    [15]
    [15] PIERROT S,SABY J,BERTRAND A,et al.. All fiber high energy,high power picosecond laser[C]//CLEO,2010:CFD3.
    [16]
    [16] ZHANG L,LI K,XU D G,et al.. A 7.81W 355 nm ultraviolet picosecond laser using La2CaB10O19 as a nonlinear optical crystal[J]. Optics Express,2014,22(14):17187-17192.
    [17]
    [17] POLLEHN H K. Performance and reliability of third-generation image intensifiers[J]. Advances in Electronics and Electron Physics,1985,64:61-69.
    [18]
    [18] 白振岙,白振旭,陈檬,等.LD泵浦全固态355 nm紫外皮秒脉冲激光器[J].应用光学,2012,33(4):804-807. BAI ZH A,BAI ZH X,CHEN M,et al.. LD-pumped all-solid-state 355 nm ultraviolet picoseconds pulse laser[J]. J. Applied Optics,2012,33(4):804-807.(in Chinese)
    [19]
    [19] 姜志兴,毛小洁,庞庆生,等.大能量多波段皮秒激光技术研究[J].激光与红外,2014,44(9):994-997. JIANG ZH X,MAO X J,PANG Q SH,et al.. Key technology of large energy multi-band picosecond laser[J]. Laser & Infrared,2014,44(9):994-997.(in Chinese)
    [20]
    [20] 毛小洁,秘国江,庞庆生,等.20 MHz紧凑型高功率被动锁模Nd: YVO4激光器[J].中国激光,2013,40(10):1002004. MAO X J,BI G J,PANG Q SH,et al.. K20MHz compact high power passively mode-locked Nd: YVO4 laser[J]. Chinese J. Lasers,2013,40(10):1002004.(in Chinese)
    [21]
    [21] 田金荣,宋晏蓉,王丽.常用激光峰值功率公式误差分析[J].中国光学,2014,7(2):253-259. TIAN J R,SONG Y R,WANG L. Error analysis of peak power formula in pulsed lasers[J]. Chinese Optics,2014,7(2):253-259.(in Chinese)
    [22]
    [22] OLIVER H.HECKL,DIRK SUTTER. Perfect precision in industrial micro machining[J]. Laser Technik J.,2012,9(2):42-47.
    [23]
    [23] FENG G,FENG G B,SHAO B B,et al.. Energy measurement of high-repetition-rate pulsed laser[J]. Chinese Optics,2013,6(2):196-200.
    [24]
    [24] BAUER D,ZAWISCHA I,H.SUTTER D,et al.. Mode-locked Yb:YAG thin-disk oscillator with 41 J pulse energy at 145 W average infrared power and high power frequency conversion[J]. Optics Express,2012,20(9):9698-9704.
    [25]
    [25] ZHU P,LI D J,LIU Q Y,et all.. 39.1μJ picosecond ultraviolet pulses at 355 nm with 1 MHz repeat rate perfect precision in industrial micro machining[J]. Opitc Letters,2013,38(22):4716-4718.
    [26]
    [26] 吴金,吴晗平,黄俊斌,等.极紫外光学器件辐照污染检测技术光纤光栅传感信号解调技术研究进展[J].中国光学,2014,7(4):519-531. WU J,WU H P,HUANG J B,et al.. Research progress in signal demodulation technology of fiber Bragg grating sensors[J]. Chinese Optics,2014,7(4):519-531.(in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article views(2762) PDF downloads(1027) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return