Volume 7 Issue 5
Sep.  2014
Turn off MathJax
Article Contents
XIA Lei, HAN Xu-dong, SHAO Jun-feng. Laser beam combination accuracy of wavelength multiplexing[J]. Chinese Optics, 2014, 7(5): 801-807. doi: 10.3788/CO.20140705.0801
Citation: XIA Lei, HAN Xu-dong, SHAO Jun-feng. Laser beam combination accuracy of wavelength multiplexing[J]. Chinese Optics, 2014, 7(5): 801-807. doi: 10.3788/CO.20140705.0801

Laser beam combination accuracy of wavelength multiplexing

doi: 10.3788/CO.20140705.0801
  • Received Date: 11 Apr 2014
  • Rev Recd Date: 13 Jun 2014
  • Publish Date: 25 Sep 2014
  • Double laser beam combination accuracy of wavelength multiplexing is carried in this article. Two beams with wavelengths of 532 nm and 515 nm are combined into one in the combination and detection system using light filter with special optical thin films, and the combination accuracy is detected. Based on this system, the corresponding theoretical model is established, and the comprehensive analysis on the error source and the value in combination and detection are given in this paper. When the pointing stability of both beams is 50 rad, the theoretical value of combination accuracy is 14.69, and the proportion of pointing stability is 99.26%. The system gets an excellent anti interference ability against the unstable factor such as the error of centroid location(error rate 3 times), and the variation in accuracy rate is less than 2.4 . When the laser pointing stability is increased to 23.51 rad, the highest theoretical value of combination accuracy is 7.09 and the proportion of pointing stability is 96.77%. The system still has a high ability of anti-interference and the variation in the accuracy rate is less than 1%. Factors that affect the beam combination accuracy of near field and small power are laser beam pointing stability, mechanical adjustment and centroid location error are all the factors to affect the combination accuracy of the near field beam with low power, among which the laser pointing stability is the main factor. Adjusting the proportion of each factor, we can control the ability of anti interference of beam combination.

     

  • loading
  • [1] 张俊, 彭航宇, 王立军. 半导体激光合束技术及应用[J]. 红外与激光工程, 2012, 41(12):3193-3197. ZHANG J, PENG H Y, WANG L J. High power diode laser beam combining technology and applications[J]. Chinese J. Lasers, 2012, 41(12):3193-3197.(in Chinese)
    [2] 郝明明. 大功率半导体激光短阵列合束及光纤耦合技术的研究[D].长春:中国科学院长春光学精密机械与物理研究所, 2012. HAO M M. Research on technologies of high power beam combination and fiber coupling for diode laser short arrays[D]. Changchun:Changchun Institute of Optics, Fine Mechanics and Physics, 2012.(in Chinese)
    [3] LIU Y Q, CAO Y H, GAO J, et al. The research of fiber-coupled high power diode laser[J]. SPIE, 2011, 8192:81922X.
    [4] S J M, H K, S B W, et al.100 kw coherently combined slab MOPAs[C]. Conference on Lasers and Electro-Optics, August 30-september 3, 2009, Shanghai:IEEE, 2009.
    [5] 梅禹珊, 付秀华, 杨永亮, 等. 光纤激光器光学膜设计与制备[J]. 中国光学, 2011, 4(3):299-304. MEI Y SH, FU X H, YANG Y L, et al. Design and preparation of optical films for fiber lasers[J]. Chinese Optics, 2011, 4(3), 299-304.(in Chinese)
    [6] 卜和阳, 卢振武, 张红鑫, 等. 内掩式透射地基日冕仪中杂光鬼像的消除[J]. 中国光学, 2013, 6(2):231-236. BU H Y, LU ZH W, ZHANG H X, et al. Suppresion of stray light ghost image in internally occulting refractive ground-based coronagraph[J]. Chinese Optics, 2013, 6(2):231-236.(in Chinese)
    [7] 徐新行, 王兵, 乔健, 等. 快反系统中平面反射镜的轻量化设计[J]. 中国光学, 2012, 5(1):35-41. XU X H, WANG B, QIAO J, et al. Lightweight design of mirror in fast-steering mirror system[J]. Chinese Optics, 2012, 5(1):35-41.(in Chines)
    [8] 谭馄. 测量激光光束抖动的图像技术[J]. 大气与环境光学学报, 2007, 2(1):32-37. TAN K. Image processing techniques for measuring laser beam quivering[J]. J. Atmospheric and Environmental Optics, 2007, 2(1):32-37.(in Chinese)
    [9] 刘海波, 谭吉春, 沈本剑, 等. 像差对星敏感器星点定位精度的影响[J]. 光学技术, 2009, 35(3):471-473. LIU H B, TAN J CH, SHEN B J, et al. Aberrations effect on position accuracy of star sensor[J]. Optical Technique, 2009, 35(3):471-473.(in Chinese)
    [10] 张宪亮. 利用CCD测量微小角度的激光远场发散角[D].成都:电子科技大学, 2005. ZHANG X L. Measurement of the far-field small divergence angle of laser beams by CCD[D]. Chengdu:University of Electronic Science and Technology of China, 2005.(in Chinese)
    [11] 王晓东.大视场高精度星敏感器技术研究[D].长春:中国科学院长春光学精密机械与物理研究所, 2003. WANG X D. Study on wild-field-of-view and high-accuracy star sensor technologies[D]. Changchun:Changchun Institute of Optics, Fine Mechanics and Physics, 2003.(in Chinese)
    [12] 周锐, 房建成, 祝世平. 图像测量中光斑尺寸优化及性能分析[J]. 仪器仪表学报, 2000, 21(2):177-180. ZHOU R, FANG J CH, ZHU SH P. Spot size optimization and performance analysis in image measurement[J]. Chinese J. Scientific Instrument, 2000, 21(2):177-180.(in Chinese)
    [13] 张辉, 袁家虎, 刘恩海. CCD噪声对星敏感器星点定位精度的影响[J]. 红外与激光工程, 2006, 35(5):629-633. ZHANG H, YUAN J H, LIU E H. CCD noise effects on position accuracy of star sensor[J]. Infrared and Laser Engineering, 2006, 35(5):629-633.(in Chinese)
    [14] 曹一磊, 高春清. 基于面阵CCD的激光光束参数测量系统精度分析[J]. 光学技术, 2004, 30(5):583-587. CAO Y L, GAO CH Q. Analysis on the accuracy of beam parameter measurement by using CCD array[J]. Optical Technique, 2004, 30(5):583-587.(in Chinese)
    [15] HANCOCK B R, STIRBL R C, CUNNINGHAM T J, et al. CMOS active pixel sensor specific performance effects on star tracker/imager position accuracy[J]. SPIE, 2001, 4284:43-53.
    [16] 李春艳, 谢华, 李怀锋, 等. 高精度星敏感器星点光斑质心算法[J]. 光电工程, 2006, 33(2):41-44. LI CH Y, XIE H, LI H F, et al. Centroiding algorithm for high-accuracy star tracker[J]. Opto-Electronic Engineering, 2006, 33(2):41-44.(in Chinese)
    [17] 杨君, 张涛, 宋靖雁, 等. 星点质心亚像元定位的高精度误差补偿法[J]. 光学 精密工程, 2010, 18(4):1002-1010. YANG J, ZHANG T, SONG J Y, et al. High accuracy error compensation algorithm for star image sub-pixel subdivision location[J]. Opt. Precision Eng., 2010, 18(4):1002-1010.(in Chinese)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1951) PDF downloads(630) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return