Volume 7 Issue 2
Mar.  2014
Turn off MathJax
Article Contents
SU Yen-hsun, KE Yuan-feng, CAI Shi-liang, YAO Qian-yu, XYU Jia-yun, KUNG Po-yen. Layer self-assembly of gold nanoparticles surface plasmon triggered photoelectric current applied plasmon sensitized solar cell[J]. Chinese Optics, 2014, 7(2): 267-273. doi: 10.3788/CO.20140702.0267
Citation: SU Yen-hsun, KE Yuan-feng, CAI Shi-liang, YAO Qian-yu, XYU Jia-yun, KUNG Po-yen. Layer self-assembly of gold nanoparticles surface plasmon triggered photoelectric current applied plasmon sensitized solar cell[J]. Chinese Optics, 2014, 7(2): 267-273. doi: 10.3788/CO.20140702.0267

Layer self-assembly of gold nanoparticles surface plasmon triggered photoelectric current applied plasmon sensitized solar cell

doi: 10.3788/CO.20140702.0267
  • Received Date: 09 Oct 2013
  • Rev Recd Date: 13 Feb 2014
  • Publish Date: 25 Mar 2014
  • In plasmon-sensitized solar cells, layer self-assembly of gold nanoparticles surface plasmon resonance can produce photoelectric current. Photoelectric conversion efficiency of gold nanoparticles layer increases with the intensity of surface plasmon resonance. The efficiency is up to 0.75%. We use the model to simulate the phenomenon of charge separation, produce of photoelectric current and relationship between surface plasmon resonance and the photoelectric currents to explain the experimental results. In the future, these nanoparticle materials have considerable potential applications in surface plasmon activated solar cells and solar cells plasmon.

     

  • loading
  • [1] HUANG X Q, TANG S H, MU X L, et al.. Freestanding palladium nanosheets with plasmonic and catalytic properties[J]. Nat. Nanotechnol, 2011, 6:28-32. [2] KABASHIN A V, EVANS P, PASTKOVSKY S, et al.. Plasmonic nanorod metamaterials for biosensing, plasmonic-metal nanostructures for efficient conversion of solar to chemical energy[J]. Nat. Mater., 2009, 8:867-871. [3] LI H B, LI F Y, HAN C P, et al.. Highly sensitive and selective tryptophan colorimetric sensor based on 4, 4-bipyridine-functionalized silver nanoparticles[J]. Sens Actuat B Chem., 2009, 145:194. [4] TIAN Y, SHI X, LU C Q, et al.. Charge separation in solid-state gold nanoparticles-sensitized photovoltaic cell[J]. Electrochem. Commun., 2009, 11:1603-1605. [5] CUEVAS-MUNIZ F M, GUERRA-BALCAZAR M, CASTANEDA F, et al.. Performance of Au and AuAg nanoparticles supported on Vulcan in a glucose laminar membraneless microfuel cell[J]. J. Power Sources, 2011, 196:5853. [6] LU Y Z, WANG Y C, CHEN W. Silver nanorods for oxygen reduction:strong effects of protecting ligand on the electrocatalytic activity[J]. J. Power Sources, 2011, 196:3033. [7] ZHOU H Q, QIU C Y, YU F, et al.. Thickness-dependent morphologies and surface-enhanced raman scattering of Ag deposited on n-Layer graphenes[J]. J. Phys. Chem. C, 2011, 115:11348-11354. [8] NIU B J, WU L L, TANG W, et al.. Enhancement of near-band edge emission of Au/ZnO composite nanobelts by surface plasmon resonance[J]. Cry. Steng. Comm., 2011, 13:3678-3681. [9] SU Y H, TU S L, TSENG S W, et al.. Influence of surface plasmon resonance on the emission intermittency of photoluminescence from gold nano-sea-urchins[J]. Nanoscale, 2010, 2:2639-2646. [10] BABA A, AOKI N, SHINBO K, et al.. Grating-coupled surface plasmon enhanced short-circuit current in organic thin-film photovoltaic cells[J]. ACS Appl. Mater. Interf., 2011, 3:2080-2084. [11] FURUBE A, DU L, HARA K, et al.. Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles[J]. J. Am. Chem. Soc., 2007, 129:14852. [12] LINIC S, CHRISTOPHER P, INGRAM D B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy[J]. Nat. Mater., 2011, 10:911. [13] TIAN Y, TATSUMA T. Plasmon-induced photoelectrochemistry at metal nanoparticles supported on nanoporous TiO2[J]. Chem. Commun.(Camb), 2004(16):1810-1811. [14] TIAN Y, TATSUMA T. Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles[J]. J Am Chem Soc, 2005, 127:7632. [15] Two highly dispersed metallic oxides by the aerosil process[J]. Degussa Technical Bulletin, 1990(56):3-21. [16] ZHU M, AIKENS C M, HOLLANDER F J, et al.. Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties[J]. J. Am. Chem. Soc., 2008, 130:5883. [17] FURUBE A, DU L, HARA K, et al.. Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles[J]. J. Am. Chem. Soc., 2007, 129:14852. [18] MCFARLAND E W, TANG J. A photovoltaic device structure based on internal electron emission[J]. Nature, 2003, 421:616. [19] BISQUERT J, CAHEN D, HODES G, et al.. Physical chemical principles of photovoltaic conversion with nanoparticulate, mesoporous dye-sensitized solar cells[J]. J. Phys. Chem. B, 2004, 108:8106. [20] WANG Q, ITO S, GRATZEL M, et al.. Characteristics of high efficiency dye-sensitized solar cells[J]. J. Phys. Chem. B, 2006, 110:25210. [21] SMESTAD G P. Optoelectronics of Solar Cells[M]. Washington, DC:SPIE, 2002. [22] WURFEL P. Physics of Solar Cells:From Principles to New Concepts [M]. Weinhein:Wiley-VCH Verlag GmbH & Co. KGaA, 2005.

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1557) PDF downloads(568) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return