Volume 7 Issue 2
Mar.  2014
Turn off MathJax
Article Contents
ZHANG Wei, ZAPPE Hans. Thermo-pneumatic micro-optics[J]. Chinese Optics, 2014, 7(2): 215-224. doi: 10.3788/CO.20140702.0215
Citation: ZHANG Wei, ZAPPE Hans. Thermo-pneumatic micro-optics[J]. Chinese Optics, 2014, 7(2): 215-224. doi: 10.3788/CO.20140702.0215

Thermo-pneumatic micro-optics

doi: 10.3788/CO.20140702.0215
More Information
  • Author Bio:

    ZAPPE Hans is professor of micro-optics and associate dean of engineering in the Department of Microsystems Engineering at the University of Freiburg, Germany. He earned his bachelor's and master's degrees at MIT and his PhD from the University of California, Berkeley, all in electrical engineering. After pursuing research activities in electronics, integrated optics, and semiconductor lasers at IBM, the Fraunhofer Institute for Applied Solid State Physics, and the Centre Suisse d'Electronique et de Microtechnique, he joined the University of Freiburg in 2000. His current research interests focus on tunable micro-optics, optical microsystems for medical applications, and novel nano-optics. E-mail: hans.zappe@imtek.uni-freiburg.de

  • Received Date: 10 Oct 2013
  • Rev Recd Date: 13 Dec 2013
  • Publish Date: 25 Mar 2014
  • We discuss the development of thermo-pneumatic micro-optics and illustrate this progress using examples from our own research as well as recent literature. Pneumatic actuation is used for tuning micro-fluidics based optics, including micromirrors and membrane microlenses, which rely on pressure applied to liquids or liquid/gas interfaces for operation. Thermo-pneumatic actuation uses on-chip temperature changes to generate the requisite pressure differences. We discuss the variety of devices, structures, liquids and membrane materials used for these micro-optical structures and provide typical operating characteristics.

     

  • loading
  • [1] CHOI J M, SON H M, LEE Y J. Biomimetic variable-focus lens system controlled by winding-type SMA actuator[J]. Optics Express, 2009, 17(10):8152-8164. [2] SON H M, KIM M Y, LEE Y J. Tunable-focus liquid lens system controlled by antagonistic winding-type SMA actuator[J]. Optics Express, 2009, 17(16):14339-14350. [3] WERBER A, ZAPPE H. Tunable microfluidic microlenses[J]. Appl. Optics, 2005, 44(16):3238-3245. [4] AGARWAL M, GUNASEKARAN R A, COANE P, et al.. Polymer-based variable focal length microlens system[J]. J. Micromechanics and Microengineering, 2004, 14(12):1665. [5] ZHOU G, LEUNG H M, YU H, et al.. Liquid tunable diffractive/refractive hybrid lens[J]. Optics Letter, 2009, 34(18):2793-2795. [6] SCHNEIDER F, DRAHEIM J, KAMBERGER R, et al. Optical characterization of adaptive fluidic silicone-membrane lenses[J]. Optics Express, 2009, 17(14):11813-11821. [7] KUIPER S, HENDRIKS B H W. Variable-focus liquid lens for miniature cameras[J]. Appl. Phys. Lett., 2004, 85(7):1128-1130. [8] LEE S W, LEE S S. Focal tunable liquid lens integrated with an electromagnetic actuator[J]. Appl. Phys. Lett., 2007, 90(12):121129. [9] WANG W, FANG J. Design, fabrication and testing of a micromachined integrated tunable microlens[J]. J. Micromechanics and Microengineering, 2006, 16(7):1221. [10] LEE S Y, TUNG H W, CHEN W C, et al.. Novel micro lens with tunable astigmatism[C]. Proceedings of the IEEE Conference on Solid-State Sensors, Actuators and Microsystems(Transducers), Lyon, France, 10-14 June, 2007:2147-2150. [11] DONG L, AGARWAL A K, BEEBE D J, et al.. Adaptive liquid microlenses activated by stimuli-responsive hydrogels[J]. Nature, 2006, 442(7102):551-554. [12] LEE S Y, TUNG H W, CHEN W C, et al.. Thermal actuated solid tunable lens[J]. IEEE Photonics Technology Letters, 2006, 18(21):2191-2193. [13] BEADIE G, SANDROCK M L, WIGGINS M J, et al.. Tunable polymer lens[J]. Optics Express, 2008, 16(16):11847-11857. [14] YANG Y J, LIAO H H. Development and characterization of thermopneumatic peristaltic micropumps[J]. J. Micromechanics and Microengineering, 2009, 19(2):025003. [15] WERBER A, ZAPPE H. Thermo-pneumatically actuated, membrane-based micromirror devices[J]. J. Micromechanics and Microengineering, 2006, 16(12):2524. [16] ZHANG W, ALJASEM K, ZAPPE H, et al.. Completely integrated, thermopneumatically tunable microlens[J]. Optics Express, 2011, 19(3):2347-2362. [17] ZHANG W, ZAPPE H, SEIFERT A. On-chip actuation for focal length tuning of pneumatic micro-lenses[J]. Optics Express, 2013, 19(3):2347-2362. [18] NGUYEN N T. Micro-optofluidic lenses:a review[J]. Biomicrofluidics, 2010, 4(3):031501. [19] DRAHEIM J. Minimalistic adaptive lenses[D]. Freiburg:University of Freiburg, 2011. [20] MERKEL T C, BONDAR V I, NAGAI K, et al.. Gas sorption, diffusion, and permeation in poly(dimethylsiloxane)[J]. J. Polymer Science Part B:Polymer Physics, 2000, 38(3):415-434. [21] JOO Y C K, KANG H, PARK J K. Analysis of pressure-driven air bubble elimination in a microfluidic device[J]. Lab Chip, 2008, 8(1):176-178. [22] ARAM D K, CHUNG J, ERICKSON D. Electrokinetic microfluidic devices for rapid, low power drug delivery in autonomous microsystems[J]. Lab Chip, 2008, 8(2):330-338. [23] ZHANG W, ZAPPE H, SEIFERT A. Polyacrylate membranes for tunable liquid-filled microlenses[J]. Optical Engineering, 2013, 52(4):046601. [24] PELRINE R, KORNBLUH R, PEI Q, et al.. High-speed electrically actuated elastomers with strain greater than 100%[J]. Science, 2000, 287(5454):836-839. [25] ZHANG W, ALJASEM K, ZAPPE H, et al.. Highly flexible MTF measurement system for tunable micro lenses[J]. Optics Express, 2010, 18(12):12458-12469.

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1437) PDF downloads(670) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return