Volume 7 Issue 1
Jan.  2014
Turn off MathJax
Article Contents
WANG Xun, JIN Chun-shui, KUANG Shang-qi, YU Bo. Techniques of radiation contamination monitoring for extreme ultraviolet devices[J]. Chinese Optics, 2014, 7(1): 79-88. doi: 10.3788/CO.20140701.079
Citation: WANG Xun, JIN Chun-shui, KUANG Shang-qi, YU Bo. Techniques of radiation contamination monitoring for extreme ultraviolet devices[J]. Chinese Optics, 2014, 7(1): 79-88. doi: 10.3788/CO.20140701.079

Techniques of radiation contamination monitoring for extreme ultraviolet devices

doi: 10.3788/CO.20140701.079
  • Received Date: 11 Oct 2013
  • Rev Recd Date: 13 Dec 2013
  • Publish Date: 25 Jan 2014
  • This paper reviews the in situ surface analysis and monitoring techniques for contamination induced in Extreme Ultraviolet Lithography(EUVL). It introduces the EUV lithography, reflective multilayer mirror and the mechanism of carbon contamination induced by EUV. It points out the requirement of the in situ surface analysis techniques in EUV lithography. The mainly surface analysis techniques are discussed. Analyzed results show the applied potentiality of each measurement used in the EUV optical system. Finally, it points out that the Fiber-based ellipsometry has further application prospect in in situ surface contamination monitoring of EUV lithography.

     

  • loading
  • [1] BAKSHI V. EUV Lithography[M]. Bellingham:SPIE Press, 2008, 2(1):19-20. [2] ATTWOOD D. Soft X-Rays and Extreme Ultraviolet Radiation:Principles and Applications[M]. Cambridge:Cambridge Press, 1999. [3] RONSE K. Optical lithography—a historical perspective[J]. Comptes Rendus Physique, 2006, 7:844-857. [4] 窦银萍, 孙长凯, 林景全. 激光等离子体极紫外光刻光源[J]. 中国光学, 2013, 6(1):20-33. DOU Y P, SUN CH K, LIN J Q. Laser-produced plasma light source for extreme ultraviolet lithography[J]. Chinese Optics, 2013, 6(1):20-33.(in Chinese) [5] FAY B. Advanced optical lithography development, from UV to EUV[J]. Microelectronic Eng., 2002, 61-62:11-24. [6] 张立超. 极紫外多层膜技术研究进展[J]. 中国光学, 2010, 3(6):554-565. ZHANG L CH. Progress in EUV multilayer coating technologies[J]. Chinese Optics, 2010, 3(6):554-565.(in Chinese) [7] SPILLER E. Soft X-Ray Optics[M]. Bellingham:SPIE Press, 1994. [8] ZOETHOUT E, SIPOS G, VAN DE KRUIJS R W, et al.. Stress mitigation in Mo/Si multilayers for EUV lithography[J]. SPIE, 2003, 5037:872-878. [9] 朱京涛, 宋竹青, 丁涛, 等. 极紫外Mg/SiC、Mg/Co多层膜的稳定性[J]. 光学 精密工程, 2013, 21(6):1380-1386. ZHU J T, SONG ZH Q, DING T, et al.. Stability of Mg/SiC, Mg/Co EUV multilayers[J]. Opt. Precision Eng., 2013, 21(6):1380-1386.(in Chinese) [10] 陈波, 何飞. 月基地球等离子体层极紫外成像仪的光学设计[J]. 光学 精密工程, 2011, 19(9):2057-2062. CHEN B, HE F. Optical design of moon-based earth's plasmaspheric extreme ultraviolet imager[J]. Opt. Precision Eng., 2011, 19(9):2057-2062.(in Chinese) [11] MEILING H, MEIJER H, BANINE V, et al.. First performance results of the ASML alpha demo tool[J]. SPIE, 2006, 6151:615-108. [12] BOLLER K J, HAELBICH R P, HOGREFE H, et al.. Investigation of carbon contamination of mirror surfaces exposed to synchrotron radiation[J]. Nuclear Instruments and Methods in Phys. Res., 1983, 208:273-279. [13] HOLLENSHEAD J, KLEBANOFF L. Modeling radiation-induced carbon contamination of extreme ultraviolet optics[J]. J. Vacuum Science Technology, 2006, B 24:64-82. [14] NAITO T, TADANO M, TERUNUMA N, et al.. Investigation of carbon contamination on SR-irradiated devices[J]. Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment, 2004, 527:624-631. [15] MERTENS B, WEISS M, MEILING H, et al.. Progress in EUV optics lifetime expectations[J]. Microelectronic Eng., 2004, 73-74:16-22. [16] OESTREICH S, KLEIN R, SCHOLZE F, et al.. Multilayer reflectance during exposure to EUV radiation[J]. SPIE, 2000, 4146:64-71. [17] OKOROANYANWU U, JIANG A, DITTMAR K, et al.. Monitoring reticle molecular contamination in ASML EUV Alpha Demo Tool[J]. SPIE, 2010, 7636:76360H. [18] OKOROANYANWU U, DITTMAR K, FAHR T, et al..Analysis and characterization of contamination in EUV reticles[J]. SPIE, 2010, 7636:76361Y. [19] KYRIAKOU G, DAVIS D J, GRANT R B, et al.. Electron impact-assisted carbon film growth on Ru(0001):Implications for next-generation EUV lithography[J]. J. Phys. Chem., 2007, C111:4491-4494. [20] MATSUNARI S, AOKI T, MURAKAMI K, et al.. Carbon deposition on multi-layer mirrors by extreme ultra violet ray irradiation[J]. SPIE, 2007, 6517:65172X-8. [21] KOSTER N, MERTENS B, JANSEN R, et al..Molecular contamination mitigation in EUVL by environmental control[J]. Microelectronic Eng., 2002, 61-2:65-76. [22] LEE D H, TOMIE T, JESSIE D, et al.. Detection of atomic-level surface contamination by extreme ultraviolet photoelectron spectroscopy technology[J]. IEEE Transactions on Plasma Science, 2009, 37:1490-1494. [23] HILLERET N, SCHEUERLEIN C, TABORELLI M. The secondary-electron yield of airexposed metal surfaces[J]. Appl. Physics a-Materials Science Processing, 2003, 76:1085-1091. [24] MALINOWSKI M E, STEINHAUS C, CLIFT W M, et al..Controlling contamination in Mo/Si multilayer mirrors by Si surface capping modifications[J]. SPIE, 2002, 4688:442-453. [25] CHEN J Q, LOUIS E, LEE C J, et al.. Detection and characterization of carbon contamination on EUV multilayer mirrors[J]. Optics Express, 2009, 17:16969-16979. [26] COLLINS R W. In-situ ellipsometry as a diagnostic of thin-film growth-studies of amorphous-carbon[J]. J. Vacuum Science Technology a-Vacuum Surfaces, 1989, Films 7:1378-1385. [27] VERHOEVEN J, LOS J. The influence of an electron beam on oxidation of polycrystalline nickel surfaces, monitored by disappearance potential spectroscopy(DAPS)[J]. Surface Science, 1976, 58:566-574. [28] KIRSCHNER J, STAIB P. Disappearance potential spectroscopy[J]. Appl. Phys. A:Mater. Sci. amp;Processing, 1975, 6:99-109. [29] STRELI C, WOBRAUSCHEK P, BAUER V, et al.. Total reflection X-ray fluorescence analysis of light elements with synchrotron radiation and special X-ray tubes[J]. Spectrochimica Acta Part B-Atomic Spectroscopy, 1997, 52:861-872. [30] STRELI C, AIGINGER H, WOBRAUSCHEK P. Light-element analysis with a new spectrometer for total-reflection X-ray-fluorescence[J]. Spectrochimica Acta Part B-Atomic Spectroscopy, 1993, 48:163-170. [31] STRELI C, WOBRAUSCHEK P, LADISICH W. Total-reflection X-ray-fluorescence analysis of light-elements under various excitation conditions[J]. X-Ray Spectrometry, 1995, 24:137-142. [32] STRELI C, WOBRAUSCHEK P, AIGINGER H. A new X-ray tube for efficient excitation of low-z-elements with total reflection X-ray-fluorescence analysis[J]. Spectrochimica Acta Part B-Atomic Spectroscopy, 1991, 46:1351-1359. [33] STRELI C, WOBRAUSCHEK P, SCHRAIK I. Comparison of SiLi detector and silicon drift detector for the determination of low Z elements in total reflection X-ray fluorescence[J]. Spectrochimica Acta Part B-Atomic Spectroscopy, 2004, 59:1211-1213. [34] SCHNEIDER D, SCHWARZ T. A photo acoustic method for characterizing thin films[J]. Surface Coatings Technology, 1997, 91:136-146. [35] VOREADES D. Secondary electron emission from thin carbon films[J]. Surface Science, 1976, 60:325-348.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1525) PDF downloads(623) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return