Volume 7 Issue 1
Jan.  2014
Turn off MathJax
Article Contents
XIE Shi-wei, XIAO Xiao, TAN Jian-jun, LIU Yu, ZHANG Zhi-you, DU Jing-lei, GAO Fu-hua. Recent progress in dye-sensitized solar cells using graphene-based electrodes[J]. Chinese Optics, 2014, 7(1): 47-56. doi: 10.3788/CO.20140701.047
Citation: XIE Shi-wei, XIAO Xiao, TAN Jian-jun, LIU Yu, ZHANG Zhi-you, DU Jing-lei, GAO Fu-hua. Recent progress in dye-sensitized solar cells using graphene-based electrodes[J]. Chinese Optics, 2014, 7(1): 47-56. doi: 10.3788/CO.20140701.047

Recent progress in dye-sensitized solar cells using graphene-based electrodes

doi: 10.3788/CO.20140701.047
  • Received Date: 14 Oct 2013
  • Rev Recd Date: 17 Dec 2013
  • Publish Date: 25 Jan 2014
  • In this paper, the research achievements on dye-sensitized solar cells using graphene-based electrodes ae tracked in recent year. The reason for the change of Power Conversion Efficiency(PCE) is analyzed when various modified graphene-based electrodes are used in dye-sensitized solar cell. The physical mechanism is studied deeply to improve the reducing electric catalytic reacivity of graphene on electrolyte. Finally, suggestions are given for the future research work in this area to clarify the thoughts for solving the problems of the dye sensitized solar cell.

     

  • loading
  • [1] O'REGAN B, GRTZEL M. A low-cost, high efficiency solar cell based on dye-sensitized colloidal TiO2 films[J]. Lett. Nature, 1990, 353:737-740. [2] 李祥, 文尚胜, 姚日晖. 硅基有机太阳能电池光学性能分析[J]. 发光学报, 2012, 33(3):286-293. LI X, WEN SH SH, YAO R H. Analysis of optical performance for organic solar cell on Si substrate[J]. Chinese J. Luminescence, 2012, 33(3):286-293.(in Chinese) [3] YELLA A, LEE H W, TSAO H N, et al.. Porphyrin-sensitized solar cells with cobalt(Ⅱ/Ⅲ)-based redox electrolyte exceed 12 percent efficiency[J]. Science, 2011, 334(6056):629-634. [4] YANG X B, LIU G X, ALEXANDER A, et al.. Triple-mode single-transistor graphene amplifier and its applications[J]. ACS Nano, 2010, 4(10):5532-5538. [5] WANG Y, SHI Z Q, HUANG Y, et al.. Supercapacitor devices based on graphene materials[J]. J. Physical Chem. C, 2009, 113(30):13103-13107. [6] SUN S R, GAO L, LIU Y Q. Enhanced dye-sensitized solar cell using graphene-TiO2 photoanode prepared by heterogeneous coagulation[J]. Appl. Phys. Lett., 2010, 96(8):083113. [7] PARK H, HOWDEN R M, BARR M C, et al.. Organic solar cells with graphene electrodes and vapor printed poly(3, 4-ethylenedioxythiophene) as the hole transporting layers[J]. Acs Nano, 2012, 6(7):6370-6377. [8] LEE S, YEO J S, JI Y, et al.. Flexible organic solar cells composed of P3HT∶ PCBM using chemically doped graphene electrodes[J]. Nanotechnology, 2012, 23(34):344013. [9] 郭颂, 杜晓刚, 刘晓云, 等. 氧化石墨烯作为共蒸镀掺杂材料在OLED中的应用[J]. 发光学报, 2013, 34(5): 595-599. GUO S, DU X G, LIU X Y, et al.. Graphene oxide as doping material for assembling OLEDs via thermal co-evaporation with NPB and Alq3[J]. Chinese J. Luminescence, 2013, 34(5):595-599.(in Chinese) [10] 冯德军, 黄文育, 纪鹏宇, 等. 基于石墨烯可饱和吸收体的掺铒光纤环形腔脉冲激光器[J]. 光学 精密工程, 2013, 21(5):1097-1101. FENG D J, HUANG W Y, JI P Y, et al.. Erbium-doped fiber ring cavity pulsed laser based on graphene saturable absorber[J]. Opt. Precision Eng., 2013, 21(5):1097-1101.(in Chinese) [11] 安楠, 白浪, 李小俊, 等. 室温下石墨烯的霍尔效应实验研究[J]. 发光学报, 2013, 34(1):45-48. AN N, BAI L, LI X J, et al. Experimental research on hall effect of graphene at room-temperature[J]. Chinese J. Luminescence, 2013, 34(1):45-48.(in Chinese) [12] LI Z Y, AKHTAR M S, KUK J H, et al.. Graphene application as a counter electrode material for dye-sensitized solar cell[J]. Mater. Lett., 2012, 86:96-99. [13] 李晓冬. 高性能染料敏化太阳能电池的制备与研究[D].上海:华东师范大学, 2011. LI X D. Preparation and investigation of high-performance dye-sensitized solar cells[D]. Shanghai:East China Normal University, 2011.(in Chinese) [14] ZHANG D W, LI X D, CHEN S, et al.. Fabrication of double-walled carbon nanotube counter electrodes for dye-sensitized solar sells[J]. J. Solid State Electrochem., 2010, 14(9):1541-1546. [15] 黄光胜, 阮晓莉, 竹怀君. 基于不同浓度铂对电极的染料敏化太阳能电池的性能研究[J]. 功能材料, 2011, 2(42):318-321. HUANG G SH, RUAN X L, ZHU H J. Performances characteristics of dye-sensitized solar cells based on counter electrodes with different Pt concentration[J]. Functional Mater., 2011, 2(42):318-321.(in Chinese) [16] 王桂强, 禚淑萍. 染料敏化太阳电池Pt_MC对电极的制备及性能[J]. 太阳能学报, 2012, 33(5):811-815. WANG G Q, ZHUO SH P. Preparation and characteristics of Pt/MC counter electrode for dye-sensitized solar cells[J]. Acta Energiae Solaris Sinica, 2012, 33(5):811-815.(in Chinese) [17] 马换梅, 田建华, 刘懿平. 染料敏化太阳能电池低铂对电极的制备和性能[J]. 化学工业与工程, 2011, 28(6):1-5. MA H M, TIAN J H, LIU Y P. Preparatioin and characterization of low Pt loading counter electrode for DSSCs[J]. Chem. Ind. Eng., 2011, 28(6):1-5.(in Chinese) [18] YU W W, ZHANG Q H, SHI G Y, et al.. Preparation of Pt-loaded TiO2 nanotubes/nanocrystals composite photocatalysts and their photocatalytic properties[J]. J. Inorganic Mater., 2011, 26(7):747-752. [19] XIAO Y M, WU J H, CHENG C X, et al.. Low temperature fabrication of high performance and transparent Pt counter electrodes for use in flexible dye-sensitized solar cells[J]. Chinese Sci. Bull., 2012, 57(18):2329-2334. [20] GONG F, ZHOU G, WANG ZH SH. Progress in research on counter electrode materials of dye-sensitized solar cells[J]. Chinese Sci. Bull.(Chinese Version), 2013, 58(4):294. [21] ZHU G, PAN L K, LU T, et al.. Electrophoretic deposition of reduced graphene-carbon nanotubes composite films as counter electrodes of dye-sensitized solar cells[J]. J. Mater. Chem., 2011, 21(38):14869-14875. [22] MEI X G, CHO S J, OUYANG J Y. High-performance dye-sensitized solar cells with gel-coated binder-free single-walled carbon nanotubefilms as counter electrode[J]. Nanotechnology, 2011, 21(39):395202. [23] ZHANG D W, LI X D, CHEN S, et al.. Fabrication of double-walled carbon nanotube counter electrodes for dye-sensitized solar sells[J]. J. Solid State Electrochem., 2010, 14(9):1541-1546. [24] YEN CH Y, LIN Y F, LIAO SH H, et al.. Preparation and properties of a carbon nanotube-based nanocomposite photoanode for dye-sensitized solar cells[J]. Nanotechnology, 2008, 19(37):375305-375313. [25] CHANG L H, HSIEH C K, HSIAO M C, et al.. A graphene-multi-walled carbon nanotube hybrid supported on oxide as a counter electrode of dye-sensitized solar cells[J]. J. Power Sources, 2013, 222:518-525. [26] CHA S I, KOO B K, SEO S H, et al.. Pt-free transparent counter electrodes for dye-sensitized solar cells prepared from carbon nanotube micro-balls[J]. J. Mater. Chem., 2010, 20(4):659-662. [27] 张永昌, 林红, 李建保. 取向多壁碳纳米管的制备及其在染料敏化太阳能电池中的应用[J]. 硅酸盐学报, 2011, 39(10):1599-1602. ZHANG Y CH, LIN H, LI J B. Synthesis of oriented multi-walled carbon nanotubes and application in dye-sensitized solar cells[J]. J. Chinese Ceramic Society, 2011, 39(10):1599-1602.(in Chinese) [28] 冷利民, 梁春杰, 庞起. TiO2纳米管阵列电极染料敏化太阳能电池[J]. 功能材料, 2010, 41(12): 2174-2177. LENG L M, LIANG CH J, PANG Q. TiO2 nanotube arrays in dye-sensitized solar cells[J]. Functional Materials, 2010, 41(12):2174-2177.(in Chinese) [29] VEERAPPAN G, BOJAN K, RHEE S W. Sub-micrometer-sized graphite as a conducting and catalytic counter electrode for dye-sensitized solar cells[J]. ACS Appl. Mater. Interfaces, 2011, 3(3):857-862. [30] CHEN J K, LI K X, LUO Y H, et al.. A flexible carbon counter electrode for dye-sensitized solar cells[J]. Carbon, 2009, 47(11):2704-2708. [31] HUANG H, ZHAO B, JIANG P, et al.. Flexible counter electrodes based on mesoporous carbon aerogel for high-performance dye-sensitized solar cells[J]. J. Phys. Chem. C, 2011, 115:22615 22621. [32] YEH M H, SUN C L, SU J S, et al.. A low-cost counter electrode of ITO glass coated with a graphene/Nafion(R) composite film for use in dye-sensitized solar cells[J]. Carbon, 2012, 50(11):4192-4202. [33] TSAI T H, CHIOU S C, CHEN S M. Enhancement of dye-sensitized solar cells by using graphene-TiO2 composites as photoelectrochemical working electrode[J]. International J. Electrochemical Science, 2011, 6(8):3333-3343. [34] ROY-MAYHEW J D, BOSCHLOO G, HAGFELDT A, et al.. Functionalized graphene sheets as a versatile replacement for platinum in dye-sensitized solar cells[J]. Acs Appl. Materials Interfaces, 2012, 4(5):2794-2800. [35] BAJPAI R, ROY S, KUMAR P, et al.. Graphene supported platinum nanoparticle counter-electrode for enhanced performance of dye-sensitized solar cells[J]. Acs Appl. Materials Interfaces, 2011, 3(10):3884-3889. [36] LEE K S, LEE Y, L J Y, et al.. Flexible and platinum-free dye-sensitized solar cells with conducting-polymer-coated graphene counter electrodes[J]. Chemsuschem, 2012, 5(2):379-382. [37] AHMAD I, KHAN U, GUN'KO Y K. Graphene, carbon nanotube and ionic liquid mixtures: towards new quasi-solid state electrolytes for dye sensitised solar cells[J]. J. Mater. Chem., 2011, 21(42):16990-16996. [38] GUN J, KULKARNI S A, XIU W, et al.. Graphene oxide organogel electrolyte for quasi solid dye sensitized solar cells[J]. Electrochem. Communications, 2012, 19:108-110. [39] AKHTAR M S, KWON S, STADLER F J, et al.. Yang, High efficiency solid state dye sensitized solar cells with graphene-polyethylene oxide composite electrolytes[J]. Nanoscale, 2013, 5:5403 5411. [40] WAN L, WANG S M, WANG X B, et al.. Room-temperature fabrication of graphene films on variable substrates and its use as counter electrodes for dye-sensitized solar cells[J]. Solid State Sciences, 2011, 13(2):468-475. [41] YU D SH, NAGELLI E, DU F, et al.. Metal-free carbon nanomaterials become more active than metal catalysts and last longer[J]. J. Phys. Chem. Lett., 2010, 1(14):2165-2173. [42] SHAO Y Y, ZHANG SH, ENGELHARD M H, et al.. Nitrogen-doped graphene and its electrochemical applications[J]. J. Mater. Chem., 2010, 20(35):7491-7496. [43] YANG S B, FENG X L, WANG X C, et al.. Graphene-based carbon nitride nanosheets as efficient metal-free electrocatalysts for oxygen reduction reactions[J]. Angewandte Chemie-International Edition, 2011, 50(23):5339-5343. [44] WANG P, NABAE Y, OKAJIMA T, et al.. Kinetics of oxygen reduction reaction on carbon alloy catalysts[J]. Electrochem. Society, 2011, 2:242. [45] WANG G Q, FANG Y Y, LIN Y, et al.. Nitrogen-doped graphene as transparent counter electrode for efficient dye-sensitized solar cells[J]. Materials Research Bull., 2012, 47(12):4252-4256. [46] XUE Y H, LIU J, CHEN H, et al.. Nitrogen-doped graphene foams as metal-free counter electrodes in high-performance dye-sensitized solar cells[J]. Angewandte Chemie-International Edition, 2012, 51(48): 12124-12127. [47] YEN M Y, HSIEN C K, TENG C C, et al.. Metal-free, nitrogen-doped graphene used as a novel catalyst for dye-sensitized solar cell counter electrodes[J]. Rsc Advances, 2012, 2(7):2725-2728. [48] ZHENG H Q, NEO C Y, MEI X G, et al.. Reduced graphene oxide films fabricated by gel coating and their application as platinum-free counter electrodes of highly efficient iodide/triiodide dye-sensitized solar cells[J]. J. Mater. Chem., 2012, 22(29):14465-14474. [49] NEO C Y, OUYANG J Y. Graphene oxide as auxiliary binder for TiO2 nanoparticle coating to more effectively fabricate dye-sensitized solar cells[J]. J. Power Sources, 2013, 222:161-168. [50] ZHANG D W, LI X D, LI H B, et al.. Graphene-based counter electrode for dye-sensitized solar cells[J]. Carbon, 2011, 49(15):5382-5388. [51] FAN J J, LIU S W, YU J G. Enhanced photovoltaic performance of dye-sensitized solar cells based on TiO2 nanosheets/graphene composite films[J]. J. Materials Chem., 2012, 22(33):17027-17036. [52] HE Z M, GUAI G H, LIU J, et al.. Nanostructure control of graphene-composited TiO2 by a one-step solvothermal approach for high performance dye-sensitized solar cells[J]. Nanoscale, 2011, 3(11):4613-4616. [53] LI Y, WANG G F, PAN K, et al.. NaYF4∶ Er3+/Yb3+-graphene composites: preparation, upconversion luminescence, and application in dye-sensitized solar cells[J]. J. Mater. Chem., 2012, 22(38):20381-20386. [54] PARK J H, SEO S W, KIM J H, et al.. Improved efficiency of dye-sensitized solar cell using graphene-coated Al2O3-TiO2 nanocomposite photoanode[J]. Molecular Crystals and Liquid Crystals, 2011, 538:285-291. [55] YANG N L, ZHAI J, WANG D, et al.. Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells[J]. Acs Nano, 2010, 4(2):887-894. [56] 向鹏. 染料敏化太阳能电池光阳极研究[D].武汉, 华中科技大学, 2012. XIANG P. The research on photo-anodes of dye-sensitized solar cells[D]. Wuhan:Huazhong University of Science and Technology, 2012.(in Chinese) [57] 田永书. 染料敏化太阳能电池光阳极的优化[D].重庆:重庆大学, 2012. TIAN Y SH. The optimization of photoanode of dye-sensitized solar cells[D]. Chongqing:Chongqing University, 2012.(in Chinese) [58] YEN M Y, HSIAO M C, LIAO S H, et al.. Preparation of graphene/multi-walled carbon nanotube hybrid and its use as photoanodes of dye-sensitized solar cells[J]. Carbon, 2011, 49(11):3597-3606. [59] TANG Y B, LEE C S, XU J, et al.. Incorporation of graphenes in nanostructured TiO2 films via molecular grafting for dye-sensitized solar cell application[J]. ACS Nano, 2010, 4(6):3482-3488.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1546) PDF downloads(1053) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return